

Really pause and think about how much time and e�ort web teams
around the world have spent building and managing infrastructure.
For many years, launching a site or web application has been as
much about deploying complex server environments as it’s been
about building actual application code. �e cloud made provision-
ing all these resources faster but no less complicated.

�e JAMstack was born of the stubborn conviction that there was a
better way to build for the web. Around 2014, developers started to
envision a new architecture that could make web apps look a lot
more like mobile apps: built in advance, distributed, and connected
directly to powerful APIs and microservices. It would take full
advantage of modern build tools, Git work�ows, new frontend
frameworks, and the shi� from monolithic apps towards decoupled
frontends and backends.

At Netlify, we’ve watched enthusiasm for the JAMstack grow well
beyond our wildest expectations. It now powers every site we deploy
for over 500,000 developers and companies. We’ve seen �rsthand
how the JAMstack improves the experience for both users and
developers. Most importantly, we’ve seen how increases in site
speed, site reliability, and developer productivity can contribute to
the continued health and viability of the open web.

We’re thrilled that you, too, want to explore the JAMstack and hope
this book serves as a useful guide. Welcome to the community.
Welcome to a new way to develop, deploy, and power web content
and applications. Welcome to the JAMstack.

Sincerely,

Matt Biilmann
CEO, Netlify

Mathias Biilmann and Phil Hawksworth

Modern Web Development
on the JAMstack

Modern Techniques for Ultra Fast Sites
and Web Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05854-0

[LSI]

Modern Web Development on the JAMstack
by Mathias Biilmann and Phil Hawksworth

Copyright © 2019 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Elizabeth Dayton
Copyeditor: Octal Publishing, Inc.

Proofreader: Sonia Saruba
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2019: First Edition

Revision History for the First Edition
2019-06-17: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern Web
Development on the JAMstack, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Netlify. See our statement
of editorial independence.

http://oreilly.com
https://oreil.lyeditorial-independence

Table of Contents

Introduction. v

1. The Challenges of Modern Web Development. 1
The Drawbacks of Monolithic Architectures 1
The Risk of Staying the Same 5

2. Introducing the JAMstack. 7
What’s in a Name? 7
JavaScript 8
APIs 9
Markup 10
Types of JAMstack Projects 12
Summary 16

3. Advantages of the JAMstack. 17
Simplifying Systems and Simplifying Thinking 17
Costs 19
Scale 22
Performance 24
Security 29
For the Developer; For the Project; For the Win 32

4. Planning for the JAMstack. 35
Setting Up the Project 35
Strategies for Managing Content 36
Choosing a Site Generator 39
Adding Automation 42

iii

Selecting a CDN 45
Providing Functionality: APIs 46

5. Shifting the Mental Model. 49
A Mindset and an Approach 49
One: Get to the CDN 50
Two: Design for Immutability and Atomic Deployments 53
Three: Employ End-to-End Version Control 58
Four: Automation and Tooling 60
Five: Embrace the Ecosystem 63
Six: Bridging the Last Gaps with Functions as a Service 66
Being Comfortable with Breaking the Monolith 67

6. Applying the JAMstack at Scale. 69
A Case Study: Smashing Magazine 69
The Challenge 69
Key Considerations 70
Picking the Right Tools 71
Content Migration 74
Utilizing Structured Content 76
Working with Large Sites 78
Building Out the Core 78
Search 80
Content Management 83
Integrating Netlify CMS 84
Listings, Search, and Assets: Customizing the CMS for Large

Projects 88
Identity, Users, and Roles 89
Ecommerce 93
Membership and Subscriptions 98
Tying It Together: Member Discounts in GoCommerce 103
Job Board and Event Tickets: AWS Lambda and Event-Based

Webhooks 104
Workflows and API Gateways 106
Deploying and Managing Microservices 107
Summary 108

7. Conclusion. 111
And One More Thing... 111

iv | Table of Contents

Introduction

In just the past few years, a flurry of advancements has greatly
strengthened the web as a content and application platform. Brows‐
ers are much more powerful. JavaScript has matured. WebAssembly
is on the horizon. It certainly feels like the beginning of a new chap‐
ter for the web. You’ve likely felt this as you’ve witnessed the explo‐
sion of new frontend frameworks and API-based services.

Although what’s technically possible in the browser has advanced, so
too have expectations for immediacy. Videos must play instantly.
Browser applications must launch faster than their desktop counter‐
parts. Users have become increasingly mobile and increasingly
impatient—we are all fed up with slow pages and we vote angrily
against them with the back button. (Google also seems to be losing
patience, and now factors site speed into its famous ranking algo‐
rithms.)

Broadly speaking, this book covers new, modern approaches to
building websites that perform as fast as possible. More concretely,
this book shows you how to run any web property, from simple sites
to complex applications, on a global Content Delivery Network
(CDN) and without a single web server. We introduce you to the
JAMstack: a powerful new approach for deploying fast, highly scala‐
ble sites and applications that don’t require traditional frontend
infrastructure. If you tend to feel delivering great websites should be
more about the craft of markup and JavaScript than server setup
and administration, you’ve found your book.

And, if you’ve ever struggled with any monolithic system or frame‐
work—wrestling with hosting, deploying changes, securing, and
scaling everything—you already understand why the JAMstack is

v

becoming so popular. It’s one of those rare shifts in the landscape
that delivers a productivity boost for developers and a large perfor‐
mance boost for users. The JAMstack is helping to bring about a
more secure, stable, and performant web that’s also more fun to
develop and create for.

Under this new approach, there isn’t a “server environment” at all—
at least not in the traditional sense. Instead, HTML is prerendered
into static files, sites are served from a global CDN, and tasks that
were once processed and managed server side are now performed
via APIs and microservices.

We realize that seasoned web developers might eye anything new
with quite a bit of skepticism. There have certainly been countless
other new ideas on how to build the web before. For nearly three
decades, the developer community has explored ways to make the
web easier and faster to develop, more capable, more performant,
and more secure.

At times, though, the effort has seemed to trade one goal for
another. Wordpress, for example, became a revolution in making
content easier to author—but anyone who’s scaled a high-traffic
Wordpress site knows it also brings a whole set of new challenges in
performance and security. Trading the simplicity of HTML files for
database-powered content means facing the very real threats that
sites might crash as they become popular or are hacked when
nobody is watching closely.

And dynamically transforming content into HTML—each and every
time it’s requested—takes quite a few compute cycles. To mitigate all
the overhead, many web stacks have introduced intricate and clever
caching schemes at almost every level, from the database on up. But
these complex setups have often made the development process feel
cumbersome and fragile. It can be difficult to get any work done on
a site when you can’t get it running and testable on your own laptop.
(Trust us, we know.)

All these challenges have led the developer community to begin
exploring the JAMstack as a modern refactoring of the way websites
are developed and served. And like any good refactoring, you’ll find
that it both advances and simplifies the stack.

Being web developers ourselves, the authors of this book are more
excited by the JAMstack than we’ve been about any emerging trend

vi | Introduction

for quite a while. That’s because it uniquely solves for all these com‐
mon problems—developer experience, performance, and security—
all at the same time, and all without one compromising the other. To
us, it feels like the logical future of the platform.

It just makes sense.

Developer Jonathan Prozzi said it best on Twitter: “My learning
journey leading to #JAMstack has re-ignited my interest and passion
for web technology.” We think the JAMstack can do a lot to rekindle
your own enthusiasm, too, and we’re eager to welcome you to the
growing community of JAMstack practitioners. You’ll find develop‐
ing for the web has become fun and fearless all over again.

The JAM in JAMstack
The JAMstack brings together JavaScript, APIs, and markup, the
three core components used to create sites that are both fast and
highly dynamic. JAMstack sites are well suited to meet the demand‐
ing requirements of today’s mobile-first web (where load times
urgently matter and quality bandwidth can never be guaranteed).

We should pause to say what the JAMstack isn’t: it’s not any one spe‐
cific technology in and of itself; nor is it driven by a large company;
nor is there any standards body that controls or defines it.

Instead, the JAMstack is a movement, a community collection of
best practices and workflows that result in high-speed websites that
are a pleasure to work on.

As you dive in, you’ll find a few common guidelines but also lots of
choice, including your pick of languages. JavaScript is called out
specifically as the language of the browser, but you can use as much
or as little JavaScript as your project requires. Many JAMstack sites
also use Python, Go, or Ruby for templating and logic. Lots of open
source software has sprung up to help you create JAMstack sites,
and we spend some time in this book going over a few of the more
popular options.

Not everything about the JAMstack is a new idea, but it’s only very
recently that we’ve had the technology required to make the
approach possible, especially on the edge of the network and in
browsers. This first section of the book should give you a working

Introduction | vii

understanding of the JAMstack, why it’s an important new develop‐
ment, and how to reason about it.

A Workflow for Productivity and Performance
By nature, JAMstack sites are the following:

• Globally distributed and resilient to heavy traffic
• Centered around a developer friendly, Git-based workflow
• Designed modularly, consuming other services via APIs
• Prebuilt and optimized before being served

It’s this last point that deserves special attention. Think for a
moment about today’s most common approach to serving web con‐
tent: for each and every request made to a website, data is pulled
from a database, rendered against a template, processed into HTML,
and finally pushed across the network (and maybe even an ocean) to
the browser that requested it.

When web servers repeatedly build each page for each request, it
begins to feel like a lot of work happens in the wrong place at the
wrong time. After all, a general rule for maximum performance is to
perform the fewest steps possible. Shouldn’t new HTML be pro‐
duced only when content or data changes, not every time it is
requested?

As it turns out, that’s exactly how the JAMstack operates. Here’s
what happens under the JAMstack workflow:

1. The source for the site is a hosted repository that stores content
and code together as editable files.

2. Whenever a change made, a build process is triggered that pre‐
renders the site, creating final HTML from templates, content,
and data.

3. The prepared, rendered assets are published globally on a CDN,
putting them as close to end users as physically possible.

This approach eliminates large amounts of server and network
latency. Given the efficiency and simplicity of serving prerendered
content directly from a CDN, it’s no surprise JAMstack sites tend to
acheive the highest possible scores on speed tests like Google Light‐
house.

viii | Introduction

Globally distributed content isn’t entirely new, but the speed at
which you can update CDN files directly from a repository is new.
No more dreaded delays waiting for the CDN’s cache to expire—we
can now build highly distributed sites right on the edge of the net‐
work and remove the need for any type of frontend servers to pro‐
cess each request.

Version Control and Atomic Deploys
In the JAMstack, it’s possible and common for the content of the
site, blog posts and all, to live in a Git repository right alongside the
code and templates. This means that no content database is
required, making JAMstack sites dramatically easier to set up, run,
deploy, branch, and modify.

And in this version-control-centric world of the JAMstack, every
deploy of the site is atomic, making it trivial to roll back to any state,
at any time, for any reason. Complex staging environments are no
longer needed as previewing and testing changes use the branching
system built into the heart of Git. With the workflow for changes
made fast, simple, and safe, most JAMstack sites are far from “static”
and are often updated just as often as their more complex counter‐
parts, sometimes hundreds of times daily.

Contributing on the JAMstack
As you picture a JAMstack workflow, you probably imagine making
code changes in an editor and then running a command to build the
site and deploy it to production. Quite a bit of development on the
JAMstack happens in this exact way, especially early on.

But for most JAMstack sites, the contributors aren’t just developers.
New updates to the site are also triggered by content authors using a
CMS as well as by automated actions, just as you’d expect from any
modern website.

Instead of happening locally, the build process now often runs on a
hosted service in the cloud. Push a change to GitHub (or another
repository service) and a new build is automatically triggered on
special-purpose build servers, sending the final result directly to the
CDN. It’s an amazingly addictive way to develop, and we show you
how to get it going.

Introduction | ix

But what about those authors who aren’t developers and might not
be familiar with Git? The JAMstack has spawned a clever new gener‐
ation of authoring tools that look and function like a normal Con‐
tent Management System (CMS) but actually check changes into
version control behind the scenes. In this way, everyone participates
in the same workflow, enjoying the safety, branching, and rollbacks
of modern version control software—even if they are unaware it’s
happening. It’s a nice improvement over content requiring a data‐
base that you need to manage and version separately.

You also can contribute changes to the site in a third way: program‐
matically, via automation. For example, you can run a script daily
that incorporates the latest press articles and Twitter mentions into
the home page. Or take what happens on Smashing Magazine’s JAM‐
stack site: each time a user comments on an article, a simple func‐
tion commits the comment to the site’s repository and triggers a new
build (as long the comment passes moderation).

Starting to see the power of this workflow? Developers, content
authors, and automated processes are all saving a living history of
the site right to the same place—the repository—which acts as one
source of truth. Even if the site is updated hundreds of times in a day
or more, every state is preserved. And, most important, the site stays
fast and responsive because every page is built and optimized before
being served.

APIs to Process and Personalize
It takes more than HTML, though: web applications need to per‐
form work and have state. Traditionally, web servers were required
to store a user’s session and allow the application to do things like
remember items in a shopping cart or power the checkout experi‐
ence.

In the JAMstack, these personalized experiences are done using
JavaScript to make API calls that send and receive data. Many of the
APIs used are third-party services. Stripe, for example, is a popular
service for processing payments. Algolia is a popular API for power‐
ing search. (Your authors have a deep love for almost all technology,
but would never go back to manually handling payments or running
Apache Solr search clusters.)

x | Introduction

Other APIs can be custom-built functions unique to each applica‐
tion. Instead of a monolithic and complex framework that manages
everything, sites can now be designed around microservices: simple
functions that perform specific tasks, executing once when called,
and then exiting cleanly. It’s a very scalable approach that’s easy to
reason about.

But with no servers to store user sessions, how do we connect all of
these discrete API calls? How do we handle authentication and iden‐
tity? To power user accounts, a JAMstack application will often cre‐
ate a secure ID token stored in the browser. (This type of token is
called a JavaScript Web Token, or JWT.) The identity is then passed
with each API call so that services are aware of the user. We cover
this setup in more detail later, but we introduce it here to help you
understand the power of the platform. JAMstack sites can do much
more than serve simple content, and many are rich applications with
all the features you’d expect, like ecommerce, membership, and rich
personalization.

Static sites may be, well, static, but you’ll find that JAMstack sites are
anything but. In fact, you’ll find prerendered markup for web UI
combined with APIs and microservices to be one of the fastest and
most reliable platforms available for advanced web applications.

Bringing It All Together: A Smashing Magazine
Case Study
Smashing Magazine has been a steady presence in web development
for more than a decade, running a massively popular website and
publishing high-quality content covering themes like frontend
development, design, user experience, and web performance.

At the end of 2017, Smashing Magazine completely rewrote and
redesigned its site to switch from a system based on several tradi‐
tional, monolithic applications to the JAMstack. This final section of
the book showcases how it solved challenges like ecommerce, con‐
tent management, commenting, subscriptions, and working with a
JAMstack project at scale.

Introduction | xi

https://www.smashingmagazine.com/

Ready? Time to Get Our JAM Session Started
The best way to learn the JAMstack is to dive right in. The JAMstack
uses the skills that you already have but pushes on your conventions
about how websites are run and what’s possible without servers. We
suggest you bring the same open mind and sense of adventure that
brought you to explore web development in the first place. There’s
never been a better time to be a web developer—unburdening our‐
selves from administering websites is bringing the focus back to cre‐
ating the content and interfaces that make them compelling.

xii | Introduction

CHAPTER 1

The Challenges of Modern Web
Development

In technology, any kind of change—even one that’s gradual or starts
with smaller projects—won’t be made lightly. These shifts involve
evaluation of past investments in infrastructure, acquisition of new
knowledge, and thoughtful consideration of feature trade-offs.

So, before we can convince you that there’s value in considering the
JAMstack as yet another approach to web development, we’ll spend
some time digging into the most pervasive approaches to web devel‐
opment today and the challenges they introduce. Put simply, let’s
look first at the risk of sticking with the status quo before diving into
the JAMstack and the benefits of making a switch.

The Drawbacks of Monolithic Architectures
Web sites have traditionally been powered by monolithic architec‐
tures, with the frontend of the application tightly coupled to the
backend.

Monolithic applications are opinionated about how tasks on the
server take place. The opinions they enforce have shaped how web
development is approached and the environment within which we
now work.

Popular and trusted as the de facto way to build for the web, these
tools have had a profound impact not just on how sites will perform,

1

but also on how efficiently they can be developed and even on the
mindset of the developers.

The lock-in created by this is tangible. These applications dictate the
approach to many facets of a web development project in ways that
are not always appealing to the web development community at
large. The selection of one monolithic app over another is often
based on how long their lists of features are. A tendency to select
tools based on what is best in class, or the most popular in the mar‐
ket, can often overlook a fundamental consideration: what does this
project actually need?

So, does this sound familiar? Have you worked on projects where
what should be simple is actually rather complex? Perhaps this com‐
plexity has been accepted because the project is for a high-profile
site or being worked on by a large team?

Does the complexity you encounter feel truly necessary?

By regularly asking ourselves these questions, we have come to
believe that there is a level of overengineering present in web devel‐
opment today. This overengineering impedes the use of proven,
effective processes, technologies, and architectures.

Can we take action to improve this situation? Can we attack the
limited flexibility, performance concerns, scaling challenges, and
security woes imposed on us by legacy architecture?

Limited Flexibility
The freedom to do good work—to design the exact experiences we
want for our users—is regularly compromised by complex mono‐
lithic applications.

Over the past few years, there has been a rising appreciation of the
dramatic performance gains made by optimizing frontend code. Yet,
while recognition of the value of strong frontend development has
grown, the platforms developers use have often not afforded the
freedom to bring frontend skills fully to bear.

The architectures imposed by monolithic applications can under‐
mine our ability to utilize the latest technologies and even affect
such things as our development workflows. This inhibits our efforts
to fundamentally protect important aspects of software development

2 | Chapter 1: The Challenges of Modern Web Development

such as a healthy development experience to unlock the potential in
our talented development teams.

Performance Concerns
Website performance is integrally important to the success of
internet-delivered content. Many studies exist that conclude that
performance and conversion are tightly linked. One such study con‐
cluded that a single-second delay in load time can hurt the conver‐
sion of an ecommerce site by 7%.

As it happens, monolithic apps are rarely conducive to superior site
performance. They need to generate and deliver HTML every time a
new visitor arrives on the site. This significantly slows down page
load time.

But performance isn’t dictated by speed alone. Because monolithic
apps are so large, it can be difficult to define architectural bound‐
aries. The code is so interconnected that fixing a bug, updating a
library, or changing a framework in one part of the app can break
another part of it.

Caching is another important part of overall site performance—and
it’s one that’s notoriously difficult to get right with a dynamic site. If
a site is built on a monolithic app, it’s possible that the same URL
can return different content depending on a variety of parameters,
including whether a user is logged in or the site was previously run‐
ning a split test. Being able to deliver a predictable experience to end
users is vital.

Scaling Challenges
Because monolithic architecture requires the page view to be gener‐
ated for every visitor, infrastructure needs to be scaled in anticipa‐
tion of site traffic. Not only is that expensive, it’s also difficult to get
right. Teams end up over-provisioning their infrastructure to pre‐
vent downtime or risk a crash because there is no clear separation
between the infrastructure required to generate and manage the site
and that required to serve the site.

When the same application that builds the page views or lets authors
manage content also needs to be scaled to handle traffic spikes, it’s
not possible to decouple these facilities in order to scale and protect
each piece of the infrastructure according to its needs.

The Drawbacks of Monolithic Architectures | 3

In this scenario, the considerations that influence the technical
architecture of a site suffer from being lumped into one large sys‐
tem. In computer science, we recognize that the costs of writes and
reads can be very different, and yet monolithic apps bundle these
features together into the same application, making them difficult to
design for appropriately.

The approach to designing a system that allows for hundreds of mil‐
lions of read operations is very different to that of a system that
allows a similar number of write operations. So, is it wise to combine
these capabilities into the same infrastructure and demand that the
risk profile of one feature influence that of another? And are those
features likely to encounter similar traffic levels?

There are ways to put distance between the users visiting your site
and the complexity that generates and delivers that site. Without
such separation, scale can be difficult to achieve.

Security Woes
We want to ensure that as we’re evaluating the reasons that mono‐
lithic apps are no longer serving the growth of the web, we’re careful
not to insult the hundreds of thousands of development teams that
chose to implement them. We’ve been that team. You might be on
that team right now. One of the ways to avoid this is by simply look‐
ing at the facts. And when we talk about security, the facts are diffi‐
cult to dismiss.

According to recent estimates, Wordpress powers 29% of the web.
Joomla and Drupal follow as the second and third most popular
content management systems, respectively. That makes them a
prime target for bad actors.

The availability of these products as hosted services can help to
absolve us from some of the responsibilities for securing the under‐
lying infrastructure, but in self-hosted instances, we must shoulder
all of that burden ourselves. In either case, there are many attack
vectors, and the introduction of third-party plug-ins can expose us
to further risk and make things even more difficult to secure.

Monolithic apps like Wordpress, Drupal, and Joomla combine every
single component and plug-in of a web project’s architecture into a
single codebase. In turn, it creates a massive surface area for mal‐
ware to penetrate. Not only is the attack surface area extremely

4 | Chapter 1: The Challenges of Modern Web Development

large, it’s also exposed every single time the site is built because any
plug-in the site uses must execute each time the page loads for a new
site visitor, magnifying the risk.

With that volume of distribution, injecting malware into a single
plug-in can mean massive distribution. A recent attack caused 12
million Drupal sites to require emergency patching.

And there’s one more gotcha: in monolithic apps, plug-ins are tied
directly to the core framework. Because they’re notoriously insecure
and require frequent (and often buggy) updates, hastily updated
plug-ins run the risk of breaking the entire site. Maintainers are left
to choose between security patches and the risk of breaking site
functionality.

The Risk of Staying the Same
Developers and business decision-makers alike have recognized the
risks of continuing to develop web projects using monolithic apps.
But the risk of change often outweighs the risk of staying the same.
For large companies, massive investment in architecture and talent
combines with fear of giving up the flexibility, features, and tooling
of a more mature ecosystem. For small businesses, rebuilding web
infrastructure pulls resources away from critical growth initiatives.

However, it’s our belief that the time has come when continuing to
invest in the status quo is a risk too great to perpetuate. And there’s
an army of developers who are backing this up. The first whispers of
change came as a wave of personal blogs, open source project docu‐
mentation sites, and time-bound projects like events and conference
sites migrated to the JAMstack.

These whispers have grown louder as larger sites with greater audi‐
ence numbers and more content also began embracing the JAM‐
stack, challenging previously accepted limitations by delivering
comments, subscription content, ecommerce, and more.

As more of the world’s population comes online, it’s essential that we
deliver sites that can handle huge traffic spikes, perform quickly and
predictably under any traffic conditions, support different languages
and localizations, and be accessible and usable on all the devices we
know and many that we don’t. And, sites need to do this all while
being secure and protected from the malicious attacks that are
inherent in an open, global network.

The Risk of Staying the Same | 5

https://nakedsecurity.sophos.com/2014/10/30/millions-of-drupal-websites-at-risk-from-failure-to-patch/

This sounds like a job for the JAMstack.

6 | Chapter 1: The Challenges of Modern Web Development

CHAPTER 2

Introducing the JAMstack

What’s in a Name?
The JAMstack at its core, is simply an attempt to give a name to a set
of widely used architectural practices. It gives us one word to com‐
municate a large range of architectural decisions.

It came about in conversations between people involved in the com‐
munities around static site generators, single-page application (SPA)
frameworks, build tools, and API services as we realized much of the
innovation in each of these categories was connected.

An entire community grew up around the first mature generation of
static site generators like Jekyll, Middleman, Metalsmith, Cactus,
and Roots. Jekyll found fame as the static site generator supported
natively by GitHub Pages, and others were developed in-house by
agencies or startups that made them a core part of their website
stack. The tools brought back a feeling of simplicity and control
from the complex database-based Content Management Systems
(CMSs) that they replaced.

At the same time, single-page app frameworks like Vue and React
started a process of decoupling the frontend from the backend,
introducing build tools like Grunt, Gulp, and later, Webpack and
Babel, which all propagated the idea of a self-standing frontend with
its own build pipeline and deployment process. This brought a
proper software architecture to the frontend workflow and empow‐
ered frontend developers to iterate much faster on the user interface
(UI) and interaction layer.

7

When these approaches to building websites and applications inter‐
sected, a new API ecosystem began to emerge. Tools like Stripe, Dis‐
qus, and Algolia made payments, comments, and search available
directly from the frontend via API-driven services.

A large set of terms for the different pieces of these new software
architectures began to appear: progressive web apps, static sites,
frontend build pipelines, single-page applications, decoupled web
projects, and serverless functions. However, none of them really
captured the move to a new architecture that encompassed content-
driven websites, web applications, and all the interesting hybrids
between the two.

The JAMstack put a name to all of it.

In today’s web development environment, the “stack” has moved up
a level. Before, we used to talk about the operating system, the data‐
base, and the web server when describing our stack (such as the
LAMP stack and MEAN stack), but with the emergence of new
practices, the real architectural constraints became the following:

• JavaScript in the browser as the runtime
• Reusable HTTP APIs rather than app-specific databases
• Prebuilt markup as the delivery mechanism

These components became the JAM in JAMstack. Let’s take a look at
each of these elements and how they’ve each evolved to enable this
new architecture.

JavaScript
In May 1995, when Brendan Eich wrote the first prototype of Java‐
Script (originally called Mocha) during a famous 10-day coding
spree, few could have imagined that it would someday be the most
important runtime language for the widest-reaching publishing
stack ever.

Today, JavaScript is nearly omnipresent in browsers. It has grown
from Eich’s initial creation of a small, scheme-inspired language
with a C-like syntax into the most highly optimized interpreted lan‐
guage in the world. It includes advanced constructs for asynchro‐
nous actions, flexible class and module system, elegant syntactic
constructs like destructuring assignment, and an object syntax that’s

8 | Chapter 2: Introducing the JAMstack

become the most commonly used data exchange format on the web
and beyond (JSON).

More than just a standalone programming language, JavaScript has
become a compilation target for transpilers, which translate varia‐
tions of JavaScript into vanilla JavaScript runnable in all modern
browsers, and compilers for new or existing languages like Elm, Rea‐
sonML, ClojureScript, and TypeScript.

In many ways JavaScript is now the universal runtime that Sun
Microsystems dreamed of when it built the Java Virtual Machine
(JVM).

This “Virtual Machine” for the web is the runtime layer for the JAM‐
stack. It’s the layer we target when we need to create dynamic flows
that go above the content and presentation layer, whether we’re writ‐
ing fully fledged applications or just adding extra functionality to a
content-based site. JavaScript is to the JAMstack what C was to
Unix, as the browsers have become the operating system of the web.

APIs
The World Wide Web is fundamentally just a UI and interaction
layer built on top of a stateless protocol called the HyperText Trans‐
fer Protocol (HTTP). The most fundamental concept of the web is
the Universal Resource Locator (URL).

As humans, we’re used to being able to type a URL into a browser or
follow a link from a website and end up on another website. When
building websites or applications, we should always think carefully
about our URL architecture and structure. But URLs also give pro‐
grams running in a browser the power of reaching any program‐
matic resource that’s been exposed to the web.

Modern web APIs were officially born with Roy Fielding’s disserta‐
tion, “Architectural Styles and the Design of Network-Based Soft‐
ware Architectures,” in 2000. It is a seminal paper that defined
Representational State Transfer (REST) as a scalable and discovera‐
ble architecture for services exposed through HTTP.

The first web APIs were meant to be consumed from server-side
applications. Without using tricks like proxying through an inter‐
mediary server or using plug-ins like Flash or Java Applets (ugh!),

APIs | 9

there was no way for a program running in a standard browser to
talk to any web API outside of its own domain.

As JavaScript grew from a scripting language mainly meant to do
minor progressive enhancements on top of server-side rendered
websites into a fully fledged runtime environment, new standards
like CORS, WebSocket, and PostMessage emerged. Paired with
other new standards like OAuth2 and JSON Web Token (JWT) for
authorization and stateless authentication, any modern web API
suddenly became reachable from any JavaScript client running in a
browser.

Only recently have we begun to understand the effects of this mas‐
sive innovation. It is one of the drivers propelling the JAMstack as
one of the most relevant architectural styles for websites and appli‐
cations. Suddenly, all of the web has become something like a giant
operating system. We’re now seeing APIs exposed for anything—
from payments or subscriptions over advanced machine learning
models running in massive cloud environments, to services that
directly affect the physical world like shipping or ride-sharing serv‐
ices, and just about anything else you can imagine. Think it up, and
there’s probably some API for it out there.

Markup
At the core of the web is HTML. The HyperText Markup Language,
known and understood by all browsers, defines how content should
be structured and distributed. It defines which resources and assets
should be loaded for a site and presents a Document Object Model
(DOM) that can be parsed, presented, and processed by anything
from standard web browsers over screen readers, to search engine
crawlers, to voice-controlled devices or smart watches.

In the early days of the web, a website was simply a folder with
HTML files exposed over HTTP by a web server. As the web
evolved, we began moving to a model in which a running program
on the server would build the HTML on the fly for each visit, nor‐
mally after consulting a database.

This was a much slower, more complex process than serving static
assets, but it was also the only viable way to work around the fact
that browsers were simple document viewers at the time. Respond‐
ing to any user interaction, be it a click or form submission,

10 | Chapter 2: Introducing the JAMstack

required an entirely new page of HTML to be assembled on the
server. This was true whether you were building a comments feature
for a blog, an ecommerce store, or any kind of web application.
Because of this document-centric architecture, web experiences
often felt much less responsive than desktop applications.

Of course, this was before the rise of JavaScript and the emergence
of cross-domain web APIs available from the browser. Today the
constraints that led to the legacy architectures of the web have gone
away.

Prebuilding Markup
Markup on the JAMstack is delivered by a different model. It is not
delivered from traditional frontend web servers tasked with building
pages at runtime.

Instead, the JAMstack approach is to prebuild all the markup up
front and serve it directly to the browser from a CDN. This process
typically involves a build tool (sometimes a static site generator like
Hugo or Gatsby; sometimes a frontend build tool like Webpack,
Brunch, or Parcel) where content and templates are combined into
HTML, source files are transpiled or compiled into JavaScript, and
CSS runs through preprocessors or postprocessors.

This creates a strict decoupling between the frontend and any back‐
end APIs. It allows us to remove a large set of moving parts from the
infrastructure and live system, which makes it much easier to con‐
sider the frontend and individual APIs involved in isolation. The
more we can bake, not fry, the content layer of our site, the more
simple deployments, scaling, and security become, and the better the
performance and end-user experience will be.

In many ways this decoupled architecture is similar to the architec‐
ture of mobile apps. When the iPhone introduced mobile apps
(originally because traditional web apps were not performant
enough), it was simply not a consideration to build a model in
which the full UI would be reloaded from a server every time the
user took some action. Instead, IOS introduced a model in which
each app could be distributed to users as an application package
with a declarative UI, including any needed assets to communicate
with JSON or XML-based web APIs from there.

Markup | 11

http://www.aaronsw.com/weblog/000404

The JAMstack approach is similar. The frontend is the app. It is dis‐
tributed to browsers directly from a CDN on a globally distributed
network. Through techniques like service workers, we can even
install our frontend directly on end users’ devices after their first
visit.

Microservices and serverless functions
Another thing happened in tandem with starting to split the front‐
end and API layers: microservice-based architectures. Backend
teams began moving away from one large monolithic API toward
much smaller services with more narrowly defined responsibilities.
This move toward microservices has culminated in Amazon Web
Services (AWS) Lambda and the concept of cloud functions,
whereby simple functions doing just one thing and nothing more
can be exposed as microweb API endpoints.

This has triggered an important architectural shift. Before, a typical
SPA had just one API through which it would communicate. Now
each SPA will typically communicate with many different APIs or
microservices. As the surface area of each of these APIs shrinks, and
standards like OAuth and JWT allow developers to tie them
together, the individual API tends to become more and more reusa‐
ble.

The amount of fully managed, reusable APIs available as managed
services will only keep growing. We’re now beginning to see the first
function app stores, helping to lift the burden of maintenance
involved in running a modern application.

Types of JAMstack Projects
Development teams all over the world have deployed a wide variety
of JAMstack-powered projects, from smaller sites and landing pages
to complex web applications, to large enterprise web properties with
thousands of pages.

HTML Content
The simplest JAMstack sites are pure static sites: a folder with
HTML and supporting assets (JavaScript, Cascading Style Sheets
[CSS], images, font files) and no moving parts; plain-text files that

12 | Chapter 2: Introducing the JAMstack

can be edited directly in an editor of choice and kept under version
control.

As soon as there is much more than a single page, however, it makes
sense to extract common elements like navigations, headers, footers,
and repeated elements into their own templates and partials. For
anything but the simplest JavaScript, you can pull modules from
npm and use more modern ES6 features. After you have a slightly
more complex stylesheet, you can introduce automatic vendor pre‐
fixing when needed, support for CSS variables across browsers, and
nesting of rules.

A proper build tool chain solves all of these while keeping the basic
simplicity of a static site. Everything lives in text files in a Git reposi‐
tory, is under version control, and can be manipulated with all of
our text-centric developer tools. With a modern continuous deploy‐
ment (CD) workflow, publishing is as simple as a Git push.

Content from a CMS
For most of the life of the web, we’ve taken for granted that our CMS
determines our entire development platform and couples rendering,
content editing, and our plug-in ecosystem tightly together. But the
advent of headless CMSs—whether they are API-driven or Git-based
—means that we can think of content editing UIs as completely sep‐
arated from the frameworks and tools which we use to render and
deliver our websites.

Content management can also be handled by Git-centric content
editing tools like Netlify CMS, Prose, Forestry, or CloudCannon. Or,
you can use the build tool to make the first build step a content syn‐
chronization with an external content API like Contentful, Prismic,
or DatoCMS.

Web Applications
In the early 2000s, Microsoft discretely added a homegrown API to
Internet Explorer called XMLHttpRequest (XHR). Before this hap‐
pened, the only way a browser could initiate a page load was by nav‐
igating to a new URL that would load a completely new web page
from scratch.

After years of XHR going more or less unnoticed, Jesse James Gar‐
rett from the agency Adaptive Path wrote an article in February

Types of JAMstack Projects | 13

2005 that would change the web: “Ajax: A New Approach to Web
Applications.” In the article, Jesse coined the term “Ajax” and gave
web developers a way to communicate about the new patterns that
emerged after XHR was used to fetch data from servers directly
from JavaScript—similar to how the JAMstack terminology now lets
us talk about a new architecture under the banner of a unifying
nomenclature.

In today’s world of ubiquitous frontend-heavy web applications, it’s
difficult to absorb just how revolutionary it was to move from rely‐
ing on complete page refreshes as the only way of truly interacting
with a web application to suddenly having the option of initiating
HTTP requests straight from JavaScript. The realization that Ajax
requests could be used to build web applications without the reli‐
ance on full page loads changed the way we thought about the web
and also pushed the browser market to start fundamentally rein‐
venting itself after years of IE6-based stagnation.

Initially, Ajax was mostly used with principles like progressive
enhancement in which a web application would be built in a way
that all state was handled on the server through full page transitions
but where browsers with JavaScript support could enhance the
interactions through partial page refreshes instead.

Separating the frontend from the backend
True SPAs came about when JavaScript performance became good
enough that we could invert the existing model and handle all page
transitions directly in the browser without any server-side round
trips. The first generation of SPAs was typically built by developing a
frontend inside large, monolithic database-driven applications. It
was common to work on stacks with Ember frontends inside Rails
apps, using the Rails asset pipeline for bundling and minification
(even if this flow was mostly painful to work with).

Modern SPAs began to separate the frontend and backend com‐
pletely, and a whole new generation of frontend build tools emerged
to make working with the frontend in isolation truly joyful—after
the initial setup and configuration hurdles have been overcome, of
course. Webpack is the most commonly used build tool for SPAs
today, offering a flow that supports JavaScript and CSS transpiling,
postprocessing, integrated bundling and code splitting, as well as
real-time browser refreshes on any save.

14 | Chapter 2: Introducing the JAMstack

Large Web Properties
When it comes to prebuilding markup, there are obvious constraints
in terms of the number of pages it is practical to generate. The build
and deployment cycle simply becomes too long to allow for a viable
workflow. If you need to publish a story before a competitor, but
you have a one-hour build and deployment cycle between the
moment you press publish in your CMS and the moment the story
is live, your stack has fundamentally let you down.

For some kinds of publishing, this is such a tight constraint that
even a 10-minute build and deploy cycle would be better served by
another stack work.

However, build tools have become surprisingly fast, and the bound‐
aries of what can be achieved with a build cycle is shrinking. A
static-site generator like Hugo can process thousands of pages a sec‐
ond and provide much faster build cycles. Such impressive perfor‐
mance improvements in these tools, along with emerging
techniques to tackle very large sites by carefully splitting site genera‐
tion into separate branches so that only a small subset of the site is
rebuilt for each update, combine to provide great results.

In the end, the trade-off will need to be based on what’s most impor‐
tant: performance, uptime, and scalability, or shortening the pub‐
lishing cycle.

For the majority of content-driven sites, as long as a deploy can be
scheduled to go live at a certain time, being able to run a build cycle
in less than 10 minutes is likely not of real importance. Unless your
site is truly gigantic (pages counted in millions rather than thou‐
sands), a JAMstack approach might be a more viable option than
you would have once thought.

Hybrid Experiences
It’s common for a company to require a variety of web experiences: a
primary website, a blog, a documentation site, a web application, an
ecommerce store, and so on. Maintaining a common look and feel
across all these applications used to be extremely challenging for
web teams. That’s because on traditional architectures, the frontend
of each application is tightly coupled to the backend used to gener‐
ate it on the server.

Types of JAMstack Projects | 15

The JAMstack solves for this in an elegant, highly scalable way. We
can build one, decoupled frontend that spans across all applications.
You’ll see this in action later when we present the Smashing Maga‐
zine case study.

Summary
The list of projects that wouldn’t be a fit for a JAMstack architecture
is continually getting shorter. Improvements in the tooling and
automation, the workflows, best practices, and the ecosystem as a
whole are creating more possibilities for what a JAMstack site can
achieve.

Now that we’ve covered what the JAMstack is and whether it’s right
for your project, it’s time to talk about the advantages that the JAM‐
stack approach can provide.

16 | Chapter 2: Introducing the JAMstack

CHAPTER 3

Advantages of the JAMstack

Simplifying Systems and Simplifying Thinking
Thanks to the innovators who have built layers of abstraction over
the low-level bits and bytes that computers use to operate, the
amount of work that is possible by a single developer is now astro‐
nomical.

Abstractions, however, are leaky. Sometimes, the lower level of the
stack suddenly makes itself known. You could be working on a high
level of object-oriented programming, developing a database-driven
application with an Object-Relational Mapping (ORM) when sud‐
denly a low-level memory management issue, deep in a compiled
dependency, opens up a buffer overflow that a clever malicious user
can abuse to hijack the database and completely take over.

Unless we find ways to build solid firewalls between the different
layers of the stack, these kinds of issues will always be able to blast
through from the lower layers or the far points in the dependency
chain.

Fortunately, the JAMstack creates several such firewalls to manage
complexity and focus attention on smaller parts in isolation.

Better Comprehension and Mental Agility
With server-side rendering, all possible layers of the stack are always
involved in any of the requests a user makes to a site or application.

17

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

To build performant and secure software, developers must deeply
understand all of the layers that requests flow through, including
third-party plug-ins, database drivers, and implementation details of
programming languages.

Decoupling the build stage completely from the runtime of the sys‐
tem and publishing prebaked assets constructs an unbreakable wall
between the runtime environment end users interact with and the
space where code runs. This makes it so much easier to design,
develop, and maintain the runtime in isolation from the build stage.

Separating APIs into smaller microservices with a well-defined pur‐
pose means that our ability to comprehend the particulars of each
service in isolation becomes much simpler. Borders between services
are completely clear.

This helps us to establish clearer mental models of the system as a
whole while being liberated from the need to understand the inner
complexities of each individual service and system. As a result, the
burden of development and maintenance of the system can be sig‐
nificantly lightened. The areas where we must direct our attention
can be more focused with confidence that the boundaries between
the services being used are robust and well defined.

There’s no need to understand runtime characteristics of JavaScript
in different browsers as well as the flows of an API at the same time.

You Don’t Need to Be an Expert at Everything
In recent years, the complexity of frontend architectures has explo‐
ded as browser APIs have evolved and HTML and CSS standards
have grown. However, it’s very difficult for the same person to be
both an expert in client-side JavaScript performance and server-side
development, database query constraints, cache optimization, and
infrastructure operations.

When we decouple the backend and frontend, it makes it possible
for developers to focus on just one area. You can run your frontend
locally with an autorefreshing development server speaking directly
to a production API, and make switching between staging, produc‐
tion, or development APIs as simple as setting an environment vari‐
able.

And with very small and super-focused microservices, the service
layer becomes much more reusable and generally applicable than

18 | Chapter 3: Advantages of the JAMstack

when we have one big monolithic application covering all of our
needs.

This means that we’re seeing a much broader ecosystem of ready-
made APIs for authentication, comments, ecommerce, search,
image resizing, and so on. We can use third-party tools to outsource
complexity and rest easy in the knowledge that those providers have
highly specialized teams focusing exclusively on their problem
space.

Reduce Moving Parts at Runtime
The more that we can prebuild, the more that we can deploy as pre‐
baked markup with no need for dynamic code to run on our servers
during a request cycle, and the better off we will be. Executing zero
code will always be faster than executing some code. Zero code will
always be more secure than even the smallest amount of code.
Assets that can be served without any moving parts will always be
easier to scale than even the most highly optimized dynamic pro‐
gram.

Fewer moving parts at runtime means fewer things that could fail at
a critical moment. And the more distance we can put between our
users and the complexity inherent in our systems, the greater our
confidence that they will experience what we intended. Facing that
complexity at build time, in an environment that will not affect the
users, allows us to expose and resolve any problems that might arise
safely and without a negative impact.

The only reason to run server-side code at request time ought to be
that we absolutely cannot avoid it. The more we can liberate our‐
selves from this, the better the experience will be for our users, oper‐
ations teams, and our own ability to understand the projects we’re
working on.

Costs
There are a variety of costs associated with designing, developing,
and operating websites and applications, and they are undoubtedly
influenced by the stack we choose. Although financial costs are
often most obvious, we should also consider costs to the developer
experience, creativity, and innovation.

Costs | 19

Financial Costs
Any web development project of significant scale will likely include
an exercise to estimate the anticipated or target traffic levels and
then a plan for the hosting infrastructure required to service this
traffic. This capacity planning exercise is an important step for
determining how much the site will cost to operate. It is difficult to
estimate how much traffic a site will receive ahead of time, so it is
common practice to plan for sufficient capacity to satisfy traffic lev‐
els beyond even the highest estimates.

With traditional architectures, in which page requests might require
activity at every level of the stack, that capacity will need to extend
through each tier, often resulting in multiple, highly specified
servers for databases, application servers, caching servers, load bal‐
ancers, message queues, and more. Each of these pieces of infra‐
structure has an associated financial cost. Previously, that might
have included the cost of the physical machines, but today these
machines are often virtualized. Whether physical or virtual, the
financial costs of these pieces of infrastructure can mount up, with
software licenses, machine costs, labor, and so on.

In addition, most web development projects will have more than
one environment, meaning that much of this infrastructure will
need to be duplicated to provide suitable staging, testing, and devel‐
opment environments in addition to the production environment.

JAMstack sites benefit from a far simpler technical architecture. The
burden of scaling a JAMstack site to satisfy large peaks in traffic typ‐
ically falls on the Content Delivery Network (CDN) that is serving
the site assets. Even if we were not to employ the services of a CDN,
our hosting environment would still be dramatically simplified
when compared to the aforementioned scenario. When the process
of accessing the content and data and then populating page tem‐
plates is decoupled from the requests for these pages, it means that
the demands on these parts of the infrastructure is not influential to
the number of visitors to the site. Large parts of the traditional infra‐
structure either do not need to be scaled or perhaps might not even
need to exist at all.

The JAMstack dramatically reduces the financial costs of building
and maintaining websites and applications.

20 | Chapter 3: Advantages of the JAMstack

Team Efficiency
The size and complexity of a project’s architecture is directly pro‐
portional to the quantity of people and range of skills required to
operate it. A simplified architecture with fewer servers requires
fewer people and far less specialization.

Complex DevOps tasks are largely removed from projects with sim‐
pler environments. What were once time-consuming, expensive,
and critical procedures—like provisioning new environments and
configuring them to faithfully replicate one another—are replaced
with maintenance of only the local development environments
(required with a traditional approach, anyway) and the deployment
pipeline to a productized static hosting service or CDN.

This shift places far more power and control in the hands of devel‐
opers, who are in possession of an increasingly widespread set of
web development skills. This reduces the cost of staffing a web
development project (through a reduced demand for some of the
more exotic or historically expensive skills) and increases the pro‐
ductivity of the developers employed. By having working knowledge
of a larger portion of the stack and fewer discipline boundaries to
cross, each developer’s mental model of the project can be more
complete and, as a result, each individual can be more confident in
their actions and be more productive.

This also lowers the boundaries to innovation and iteration.

The Price of Innovation
When making changes to a site, we need to be confident of the effect
our changes might have on the rest of the system.

The JAMstack taked advantage of APIs and an architecture of well-
defined services with established interface layers, moving us toward
a system that embraces the mantra of “small pieces, loosely joined.”
This model of loose coupling between different parts of a site’s tech‐
nical architecture lowers the barriers to change over time. This can
be liberating when it comes to making technical design decisions
because we are less likely to be locked into one particular third-party
vendor or service, given that we have well-defined boundaries and
responsibilities across the site.

This also gives development teams freedom to refactor and develop
the particular parts of the site that they control, safe in the knowl‐

Costs | 21

edge that as long as they honor the structure of the interfaces
between different parts of the site, they will not compromise the
wider project.

Whereas monolithic architectures stifle the ability to iterate, with
tight coupling and proprietary infrastructures, the JAMstack can
break down these boundaries and allow innovation to flourish.

Of course, it is still possible to design a JAMstack site in a way that
creates a tightly coupled system or that has many interdependencies
that make change difficult. But, we can avoid this because the sim‐
plification of the required infrastructure leads to greater clarity and
understanding of the constituent parts of the site.

We just discussed how reducing the moving parts of the system at
runtime leads to greater confidence in serving the site. This also has
a significant impact on reducing the cost of innovation. When any
complexity can be exposed at build time rather than at runtime, we
are able to see the results of our modifications in far greater safety,
allowing for greater experimentation and confidence in what will
ultimately be deployed.

From simplification of the system to richer mental models and
greater empowerment in development teams, with the JAMstack,
the cost of innovation can be significantly reduced.

Scale
The ability for hosting infrastructure to be able to meet the demands
of a site’s audience is critical to its success. We talked about the cost
associated with planning and provisioning hosting infrastructure on
traditional stacks and then the much simpler demands when using
the JAMstack. Now, let’s look more closely at how the JAMstack can
scale, and why it is so well suited for delivering sites under heavy
traffic loads.

Even with the most rigorous capacity planning, there are times
when our sites (hopefully) will experience even more attention than
we had planned for, despite all of our contingency and ambition.

The use of the word “hopefully” in the previous sentence is a little
contentious. Yes, we want our sites to be successful and reach the
widest audience that they can. Yes, we want to be able to report
record visitor levels from our analytics and have a wild success on

22 | Chapter 3: Advantages of the JAMstack

our hands. But infrastructure teams regularly fear that their sites
could become too popular. That instead of a healthy, smooth level of
demand, they receive huge spikes in traffic at unexpected times. The
fear of being at the top of Hacker News features heavily on capacity
planning sessions, although it is repeatedly being changed for
whichever site or social media property might be the latest source of
excessive traffic levels due to a site going viral.

The advent of virtualized servers has been a huge step forward in
addressing this challenge, with techniques available for monitoring
and scaling virtual server farms to handle spikes in traffic. But again,
this adds complexity to technical design and maintenance of a site.

Aping Static in Order to Scale
One technique employed by many sites designed and engineered to
cope with high traffic levels (both sustained and temporal) is to add
a caching layer and perhaps also a CDN to their stack.

This is prudent. And it’s also where the JAMstack excels.

Sites built on traditional stacks need to manage their dynamically
created content into their various caching layers and CDNs. This is a
complex and specialized set of operations. The complexity and
resulting cost has lead to a perception that CDNs are the domain of
large, enterprise sites with big teams and big budgets. The tooling
they put in place effectively takes what is dynamic and propagates
that to caching and CDNs as sets of static assets so that they can be
served prebaked without a round trip to the application server.

In other words, dynamic sites add an extra layer of complexity just
to allow them to be served with static hosting infrastructure to sat‐
isfy demand at scale.

Meanwhile, with the JAMstack we are already there. Our build can
output exactly the kinds of assets needed to go directly to the CDN
with no need to introduce additional layers of complexity. This is
not the domain of large enterprise sites, but within reach of anyone
using a static site generator and deploying their sites to one of a
multitude of CDN services available.

Geography
In addition to the volume of traffic a site might receive, we also must
consider the geographical location of our site’s visitors. If visitors are

Scale | 23

situated at the opposite side of the world to where our servers live,
they are likely to experience diminished performance due to latency
introduced by the network.

Again, a CDN can help us meet this challenge.

A good CDN will have nodes distributed globally, so that your site is
always served to a visitor from the closest server. If your chosen
architecture is well suited to getting your site into the CDN, your
ability to serve an audience anywhere in the world will be vastly
improved.

Redundancy
When designing web architectures, we aim to minimize the single
points of failure (SPoFs). When sites are being served directly from
a CDN, our own servers no longer act as a SPoF that could prevent a
visitor from reaching the site. Moreover, if any individual node
within a global CDN fails (in itself a pretty major and unlikely
event), the traffic would be satisfied by another node, elsewhere in
the network.

This is another example of the benefit of putting distance between
build environments and serving environments, which can continue
to function and serve traffic even if our own build infrastructure
were to have an issue.

Resiliency, redundancy, and capacity are core advantages of deliver‐
ing sites with the JAMstack.

Performance
Performance matters. As the web reaches more of the planet, the
developers building it must consider varying network reliability and
connectivity speeds. People expect to be able to achieve their online
goals in an increasing variety of contexts and locations. And the
types of devices that are being used to access the web have never
been more diverse in terms of processing power and reliability.

Performance can be interpreted to mean many things. In recent
years, the value of serving sites quickly and achieving a rapid time to
first meaningful paint and time to interactive has been demonstrated
to be critical to user experience (UX), user retention, and conver‐

24 | Chapter 3: Advantages of the JAMstack

sion. Simply put, time is money. And the faster websites can be
served, the more value they can unlock.

There have been many case studies published on this. You can find
some staggering results from web performance optimization listed
on https://wpostats.com/, some showing marginal performance
yielding impressive improvements, like these:

• “COOK increased conversion rate by 7% after cutting average
page load time by 0.85 seconds. Bounce rate also fell by 7% and
pages per session increased by 10%.”
—NCC Group

• “Rebuilding Pinterest pages for performance resulted in a 40%
decrease in wait time, a 15% increase in SEO traffic, and a 15%
increase in conversion rate to signup.”
—Pinterest Engineering

• “BBC has seen that they lose an additional 10% of users for
every additional second it takes for their site to load.”
—BBC

While others boast staggering results:

• “Furniture retailer Zitmaxx Wonen reduced their typical load
time to 3 seconds and saw conversion jump 50.2%. Overall rev‐
enue from the mobile site also increased by 98.7%.”
—Google and Zitmaxx Wonen

Where to Focus Optimization Efforts
For a long time, performance optimizations for websites focused
primarily on the server side. So-called backend engineering was
thought to be where serious engineering happened, whereas front‐
end code was seen by many as a less-sophisticated field. Less atten‐
tion was paid to performance optimizations in the frontend, client-
side code.

This situation has changed significantly. The realization that effi‐
ciencies in the architecture and transmission of frontend code could
make a staggering difference to the performance of a site has created
an important discipline in which measurable improvements can be
made. Much proverbial low-hanging fruit was identified, and today

Performance | 25

https://wpostats.com/
https://bit.ly/2tBCkGV
https://bit.ly/2MCy5UJ
https://bit.ly/2MJqAin

there is an established part of the web development industry focused
on frontend optimization.

In the frontend, we see incredible attention being given to things
like the following:

• Minimizing the number of HTTP requests required to deliver
an interactive site

• Page architectures designed to avoid render blocking or depen‐
dencies on external sources

• Use of image and visualization techniques that avoid heavy vid‐
eos and images

• Efforts to avoid layout thrashing or slow paint operations

With these, and countless other areas, the work of optimizing for
performance in the browser has gained tooling, expertise, and
appreciation.

But the performance of the web-serving and application-serving
infrastructure continues to be critical, and it’s here where we see
efforts to optimize through initiatives like the following:

• Adding and managing caching layers between commonly
requested resources

• Fine-tuning database queries and designing data structures to
minimize bottlenecks

• Adding compute power and load balancing to increase capacity
and protect performance under load

• Creating faster underlying network infrastructure to increase
throughput within hosting platforms

Each area is important. Good web performance requires a concerted
effort at all levels of the stack, and a site will only be as performant
as its least performant link in the chain.

Critically though, the JAMstack removes tiers from that stack. It
shortens that chain. Now operations on which teams used to spend
large amounts of time and money to optimize in an effort to speed
them up and make them more reliable don’t exist at runtime at all.

26 | Chapter 3: Advantages of the JAMstack

Those tiers and operations that do remain can now receive more
scrutiny than before because fewer areas exist to compete for atten‐
tion and benefit from our best optimization efforts.

However, there is no code that can run faster than zero code. This
kind of simplification and separation of the building of sites from the
serving of sites yields impressive results.

Consider a typical request life cycle on a relatively simple, but
dynamic, site architecture:

1. A browser makes a request for a page.
2. The request is handled by a web server that inspects the URL

requested and routes the request to the correct piece of internal
logic to determine how it should be satisfied.

3. The web server passes the request to an application server that
holds logic on which templates should be combined with data
from various sources.

4. The application server requests data from a database (and per‐
haps external systems) and renders this into a response.

5. The response is passed back from the application server to the
web server and then on to the browser where it can be displayed
to the user.

Figure 3-1 shows this process.

Performance | 27

Figure 3-1. Legacy web stack versus JAMstack

In systems like the one just described, with a dynamic backend, it
has become common to introduce additional layers in order to help
improve performance. We might see the introduction of a caching
layer between the webserver and application server, or indeed
between the application server and databases. Many of these layers
actually introduce operations that behave as if that part of the sys‐
tem were static but need to be managed and updated by the system
over the course of operation.

Now let’s consider the same scenario for the JAMstack, also shown
in Figure 3-1, in which the compilation of page views is not carried
out on demand, but ahead of time in a single build process:

1. A browser makes a request for a page.
2. A CDN matches that request to a ready-made response and

returns that to the browser where it can be displayed to the user.

Right away we can see that a lot less happens in order to satisfy each
request. There are fewer points of failure, less logical distance to
travel, and fewer systems interacting for each request. The result is
improved performance in the hosting infrastructure by default.
Assets are delivered to the frontend as quickly as possible because
they are ready to be served, and they are already as close to the user
as is possible thanks to the use of CDN.

28 | Chapter 3: Advantages of the JAMstack

Only Turning the Gears When Necessary
This significantly shorter request/response stack is possible because
the pages are not being assembled per request; instead, the CDN has
been primed with all of the page views that we know our site will
need.

Again, we are benefitting from decoupling the generation and popu‐
lation of pages from the time that they are needed. They are ready to
be served at the very moment they are requested.

In addition, we can enjoy being forewarned of any issues that might
arise during the generation of these pages. Should such an issue
occur in a site where the pages were being generated and served on
demand, we would need to return an error to the user.

Not so in a JAMstack site for which the generation of pages happens
ahead of time during a deployment. There, should a page generation
operation fail, the result would be a failed deployment which would
never be conveyed to the user. Instead, the failure can be reported
and remedied in a timely fashion. Without any users ever being
affected or aware.

Security
The reduced complexity of the JAMstack offers another advantage: a
greatly improved security profile for our sites.

Reducing Surface Area
When considering security, the term surface area is often used to
describe the amount of code, of infrastructure, and the scale of the
logical architecture at play in a system. Fewer pieces of infrastruc‐
ture means fewer things to attack and fewer things on which you
need to spend effort patching and protecting. Reducing surface area
is a good strategy toward improving security and minimizing ave‐
nues for attack.

As we have already learned, the JAMstack benefits from a smaller,
simplified stack when compared to traditional architectures with
their various servers and databases, each needing the ability to inter‐
act with one another and exchange data. By removing those layers,
we also remove the points at which they interact or exchange data.

Security | 29

Opportunities for compromising the system are reduced. Security is
improved.

Reducing Risk with Read-Only
Beyond improving security by reducing the surface area, JAMstack
sites enjoy another benefit. The pieces of infrastructure that remain
involved in serving our sites do not include logical code to be exe‐
cuted on our servers at request time. As much as is possible, we
avoid having servers executing code or effecting change on our sys‐
tem.

In read-only systems, not only are scale and performance considera‐
tions improved, but our security profile is improved.

We can return to the discussion of Wordpress sites as a useful com‐
parison. A Wordpress site combines a database, layers of logic writ‐
ten in PHP, templates for presentation, and a user interface for
configuring, populating, and managing the site. This user interface
is accessed over the web via HTTP, requiring that a Wordpress site is
capable of accepting HTTP POST requests, and consuming and
parsing the data submitted to it in those requests.

This opens a popular, and often successful, attack vector to Word‐
press sites. Considerable effort has been invested in attempting to
secure this route to attack, and adhering strictly to establish good
practices can help. But this can’t ensure total security.

Speculative, hostile traffic that probes for poorly secured Wordpress
administration interfaces is rife on the internet. It is automated, pro‐
lific, and continues to improve in sophistication as new vulnerabili‐
ties are discovered.

For those looking to secure a Wordpress site, it is a difficult battle to
permanently, confidently win.

The JAMstack is different. Instead of beginning with an architecture
that allows write operations for servers to execute code, and then
trying to secure this by keeping the doors to such operations tightly
guarded, a JAMstack site has no such moving parts or doors to
guard. Its hosting infrastructure is read-only and not susceptible to
the same types of attack.

Except, we’re cheating here. We’re talking about JAMstack sites as if
they were static—both in hosting infrastructure and in user experi‐

30 | Chapter 3: Advantages of the JAMstack

ence. Yet we’re also trying to convey that JAMstack sites can be just
as dynamic in experience as many other architectures, so what
gives?

We have been simplifying a little and skipping over aspects of JAM‐
stack sites which might interact with other systems. The JAMstack
certainly includes all manner of rich interactive services that we
might use in our sites. We talk about a growing ecosystem of serv‐
ices at our disposal, so how do we reconcile that with regard to secu‐
rity?

Let’s look.

Outsourced or Abstracted Services
So far, we’ve focused on the infrastructure that we, as site owners,
would need to secure and operate ourselves. But if we are to create
dynamic experiences, there will be times when our sites will need to
interact with more complex systems. There are some useful
approaches available to us to minimize any negative impact on secu‐
rity. Let’s examine some of them.

Outsourcing complexity
Recalling that the “A” in JAMstack stands for APIs, it shouldn’t be a
surprise that we’d describe advantages in using APIs to interact with
external services. By using APIs to allow our sites to interact with a
discrete set of services, we can gain access to a wide variety of addi‐
tional capabilities far beyond what we might want to provide our‐
selves. The market for capabilities as a service is broad and thriving.

By carefully selecting vendors that specialize in delivering a specific
capability, we can take advantage of their domain expertise and out‐
source to them the need for specialist knowledge of their inner
workings. When such companies offer these services as their core
capabilities, they shoulder the responsibilities of maintaining their
own infrastructure on which their business depends.

This model also makes for better logical separation of individual
services and underlying capabilities, which can be advantageous
when it comes to maintaining a suite of capabilities across your site.
The result is clear separation of concerns in addition to security
responsibilities.

Security | 31

Abstraction and decoupling
Not all capabilities can be outsourced and consumed via APIs.
There are some things that you need to keep in-house either because
of business value or because external services aren’t able to satisfy
some more bespoke requirements.

The JAMstack is well placed to minimize security implication here,
too. Through the decoupling of the generation of sites through pre‐
rendering and the serving of our sites after they have been generated
and deployed, we put distance between public access to our sites and
the mechanisms that build it. Earlier, we urged caution when pro‐
viding access to Wordpress sites backed by a database, but it is
highly likely that some parts of our sites might need to access con‐
tent held in a database. If access to this database is totally abstracted
away from the hosting and serving of our sites, and there is no pub‐
lic access to this resource (because it is accessed through a totally
decoupled build process), our security exposure is significantly
reduced.

JAMstack sites embody these principles:

• A minimal surface area with largely read-only hosting infra‐
structure

• Decoupled services exposed to the build environment and not
the public

• An ecosystem of independently operated and secured external
services

All of these principles improve security while reducing the complex‐
ity we need to manage and maintain.

For the Developer; For the Project; For the Win
Throughout this chapter we’ve talked about the advantages that
come from reduced complexity. We’ve talked about how removing
common complexity can reduce project costs, improve the ability to
scale and serve high volumes of traffic, and improve security.

All of these are good news for a project. They are good for the bot‐
tom line. They improve the likelihood of a project being approved to
proceed and its chances of prolonged success. But if this comes at

32 | Chapter 3: Advantages of the JAMstack

the cost of a sound development experience, we have some weighing
up to do.

Really? Isn’t that being overdramatic?

Developer experience is an important success factor. The ability for
a developer to effectively deliver on the promise of the design, the
strategy, and the vision can often be the final piece of the puzzle. It’s
where ideas are realized.

A poor development experience can be devastating for a project. It
can impede development progress and create maintenance implica‐
tions that damage the long-term health of a project. It can make it
more difficult to recruit and to retain the people you need to deliver
a project. It can generate frustrations at slow progress or poor relia‐
bility. It can choke off any ability to innovate and make a project
great.

A good developer experience can help to create high productivity, a
happy team, and innovation at all levels of a project. It is something
to strive for.

But of course, we can’t sacrifice user experience for developer expe‐
rience. Jeremy Keith has deftly articulated this on a number of occa‐
sions, notably here:

Given the choice between making something my problem, and
making something the user’s problem, I’ll choose to make it my
problem every time.
—Jeremy Keith, Needs Must, 2018

What we need is an architecture and an approach to development
that somehow satisfies both of these criteria. The JAMstack can
deliver this for us.

The simplification that we have heralded so many times in this
chapter does not come at the cost of clarity. It does not introduce
obfuscation or opaque magic. Instead, it employs tools, conventions,
and approaches that are both popular and increasingly available
among web developers. It embraces development workflows
designed to enhance a developer’s ability to be effective and to build
things in familiar but powerful environments. It creates strong logi‐
cal boundaries between systems and services, creating clear areas of
focus and ownership. We need not choose between an effective
developer experience and an effective user experience. With the
JAMstack we can have both.

For the Developer; For the Project; For the Win | 33

https://adactio.com/journal/13333

How? Let’s move on to look at some best practices.

34 | Chapter 3: Advantages of the JAMstack

CHAPTER 4

Planning for the JAMstack

This section covers the JAMstack end-to-end setup and highlights
the choices you’ll make along the way to create the appropriate setup
for your team. These decisions include the following:

• How you’ll manage the project/code
• Where you’ll store your content
• What software will build your site
• How your build process will be automated
• Where your site will be published
• What services and APIs your live site will use

Let’s look at each one in turn.

Setting Up the Project
With no server or database to configure, a JAMstack project is
largely a simple folder structure full of text files. The contents of
your JAMstack project will usually include the following:

• A source folder to store your content files
• A folder for layouts and templates
• A configuration file containing the settings for the build process
• A static site generator, usually added as a dependency

35

• A destination folder to save the final output

You can manage your entire project locally, directly on your com‐
puter, but it’s always best to begin by setting up a hosted Git reposi‐
tory. Even if you are the only site author, starting a repository will
give you an online backup, store the history of the project, and
eventually allow others to contribute. And in a moment, you’ll also
see how a hosted repository is key to triggering new builds when‐
ever a change is pushed.

Rarely would you set up your entire project folder from scratch
because most site generators have sample projects that you can
download from GitHub as a starting point. But before we talk about
site generators, let’s cover the various ways to manage content on the
JAMstack.

Strategies for Managing Content
Every website begins with content. On Content Management System
(CMS) systems like Drupal or Wordpress, sites manage content in a
database, and editors use an admin interface to write and save the
content to the database.

On the JAMstack, there are actually a few content approaches.

Text Files
For many JAMstack sites, content couldn’t be more straightforward:
it’s simply a folder full of files that lives directly within the project
with the templates, plug-ins, and other assets. Creating a new file in
the content directory will create a new page after the site is pub‐
lished, and changes are made by editing the content files in a text
editor and then committing the changes to the Git repository. The
name of each file and the folder it is in will determine its URL path
after the site is generated.

What does one of these content files look like? It can be straight
HTML—though usually paired down to only the unique parts of the
page. Common elements like headers and footers then are added by
the site generator during the build step.

Authoring site content in pure HTML can still be tedious, however.
This is why Markdown, shown in Figure 4-1, a much-simplified syn‐
tax, has become the most popular option for writing content. If

36 | Chapter 4: Planning for the JAMstack

you’ve used Slack and surrounded a word with asterisks to *bold* it,
you’ve used a modified form of markdown.

Figure 4-1. Markdown and the resulting HTML output

Most common CMSs have additional settings for each page; for
example, which layout to use or which category and tags the page
should be assigned.

To store details such as these, static site generators have standar‐
dized on a top section of each file called the metadata. Often written
in YAML, it’s a simple key/value collection of settings and other data
that apply to the page, as demonstrated in Figure 4-2.

Figure 4-2. A sample markdown file with metadata

Strategies for Managing Content | 37

Git-Based CMS
It’s likely that not all your site contributors will be developers, and
using Git and text files may be an unfamiliar experience. This is
actually the reason why database-backed CMSs like Wordpress were
originally created. However, you probably also have experienced
how a complex CMS can create artificial separation between the
content editors working in the database and the developers building
the code and templates.

Because every web page ultimately ends up as a combination of con‐
tent and markup, it would be nice if you could manage them both
by the same process.

There’s now a new generation of CMS software does exactly this,
managing content as files in Git rather than a database. Usually
included in your project as a single-page application (just an HTML
file with some JavaScript dependencies), a Git-based CMS allows
users to log in to a familiar admin interface to edit content and pre‐
view and save changes.

Here’s the clever bit: a saved change in the CMS is really made as a
Git contribution behind the scenes. That’s powerful in that develop‐
ers and editors are working in the same Git-based workstream,
modifying the same files using whichever method is most comforta‐
ble to them.

NetlifyCMS.org is an open source CMS that works in this manner.
Forestry.io is another.

Headless CMS
This is a category of hosted services that provide a rich online inter‐
face for managing and editing content.

“Headless” refers to the idea that these services manage only the
content, leaving it up to the developer to determine how and where
the site is built and hosted. Larger projects use a headless CMS as a
central content store behind their entire collection of sites and
mobile apps.

All headless CMS services provide an API that is used to pull the
most recent content during the build step (and also dynamically
using JavaScript as the site runs).

38 | Chapter 4: Planning for the JAMstack

http://NetlifyCMS.org
https://forestry.io/

For example, you might use a headless CMS for your recruiting
team to manage job postings. The static site generator would then
query the API during the build step, receiving a list of the job post‐
ings as JSON. It would then use templates to create a unique HTML
page for each posting, plus, of course, an index page listing all the
postings together.

Self-Hosted CMS
Running the JAMstack does not preclude you from using something
more traditional like Wordpress or Drupal to manage content. In
recent versions, both of these popular CMSs have added APIs to
access the content they contain. So, much like the aforementioned
headless CMS service, you can connect your content to your JAM‐
stack site using the API.

In this way, you can continue to manage content in a familiar CMS
but now prebuild the site to dramatically speed up performance by
serving rendered pages from a CDN. And becauseWordpress and
Drupal would no longer need to be public facing, you have many
more options to keep them secure.

Choosing a Site Generator
With content managed using one or more of the just described tech‐
niques, it’s time to think of how it is transformed into production
HTML.

In the beginning, site generators were almost synonymous with
Jekyll, the first site generator to gain wider traction and popularity.
Jekyll was created by Tom Preston-Werner, GitHub’s cofounder,
using the Ruby programming language.

Today, site generators are available in almost every language, includ‐
ing Ruby, Python, PHP, JavaScript, and Go. The website
staticgen.com is a community-curated directory of static site genera‐
tors, with more than 30 languages represented. Most all site genera‐
tors are both free and open source.

Perhaps the most difficult part of getting started with the JAMstack
is picking the appropriate site generator from the ever-expanding
list of options. The staticgen.com website shows the popularity of
each generator, but beyond what others think, there are some real

Choosing a Site Generator | 39

http://staticgen.com
http://staticgen.com

factors that you should consider that will flavor your experience
with the JAMstack.

One: The Type of Website
You’ll find each generator is created by its authors with a particular
type of website or application in mind. Some generators are
designed for websites with complex taxonomy and thousands of
pages, others specifically for blogs, others for documentation, others
for progressive web apps (PWAs), and richly interactive apps for
which most all content and navigation is loaded and handled via
JavaScript. Our advice is to check out sample projects created with
each static site generator to see if they match your own intended
results.

Two: The Programming Language Used
It’s very possible to use a site generator without knowing the pro‐
gramming language used to create it. For example, even if you know
nothing about the Go programming language, Hugo is a great
choice because you can download and install it as a binary applica‐
tion with nothing else to set up and no programming knowledge
required.

Jekyll also does not require any specific Ruby experience to make
good use of it, but you first need to have a working Ruby installation
to get it to run on your computer. Gatsby, another popular site gen‐
erator that uses the React JavaScript framework, requires you to
have a recent version of Node.js installed. You get the idea: a little
experience with the tooling around the language can help.

It’s not a bad idea to consider a site generator written in a language
your team finds familiar. As your site grows more complex, you
might find the need for your own custom plug-ins and transforma‐
tions. Familiarity with the generator’s language can help you modify
and extend its functionality.

Three: The Templating Syntax
A majority of your JAMstack development will be spent creating
and modifying HTML templates, CSS, and JavaScript. Take a close
look at the templating languages your chosen static site generator
supports. All templating languages augment traditional HTML

40 | Chapter 4: Planning for the JAMstack

markup with new functionality like reusable code blocks, if state‐
ments, and loops. However, the exact syntax used varies and is
largely a matter of personal preference. Some developers prefer the
minimalist style of a language like Jade or Pug—both of these forgo
brackets and closing tags in favor of indentation. Other developers
prefer template languages like Handlebars and Liquid that look as
close to traditional HTML as possible.

Four: Speed
The speed at which your site generator can build out each page
becomes important as your content grows. A site with a handful of
pages can take just milliseconds to build, whereas a site with
archives of content can take several minutes to complete building.
Because each change you publish will run the build process, speed is
an important consideration.

Hugo is notoriously fast at building site pages, thanks to Go’s multi‐
threaded architecture. Other site generators, by nature of their
design goals, build both static HTML and a JavaScript bundle for
each page. The JavaScript will be used to reduce load times for a user
navigating around the site after it is on a CDN, but the extra work
involved increases build time significantly.

Five: Developer Tooling
The core goal of a site generator is to transform content into HTML,
but as you know, a site always contains other assets like CSS, images,
and JavaScript. Modern frontend web development is starting to
look a lot like traditional software development, with tool chains to
prepare and compile assets for production.

Before publishing the site, images often need to be compressed,
JavaScript transpiled and minified, and CSS combined or converted
from formats such as SASS and LESS. Recently, it’s also become
common to inline CSS and smaller images directly in the HTML for
the performance benefit of the browser not needing to make an
extra request to fetch these items.

So, the build of a JAMstack site is often both of these steps: creating
the HTML and compiling these production assets. Some site genera‐
tors concern themselves with only the HTML, leaving producing the
rest of the assets to another utility like Gulp or Webpack. Other gen‐
erators look to be more holistic and actually include features to han‐

Choosing a Site Generator | 41

dle compiling JavaScript CSS, and images—especially site generators
built on JavaScript frameworks like Nuxt (Vuejs) or Gatsby (React).
You’ll find a lot of generators actually make use of popular tools like
Webpack under the hood.

Linting is also common. This is the process of automatically running
tests against the HTML, JavaScript, and CSS to check for errors.
This is a fantastic way to discover problems before they bite you in
production. Linters are often particular about formatting, too,
ensuring that everyone contributing adheres to the same standards.

Finally, developers working locally often will preview changes
locally in a rapid-fire session of editing files and viewing changes in
a browser. To support this, most site generators include a small web
server that can allow you to serve the site locally for testing. Better
yet is hot reloading, which is the ability for the browser to be updated
immediately as a change is saved, with no need to click refresh or
lose the current state of your application.

Recommending a site generator is a bit like recommending a com‐
puting device: it really depends on what you prefer, what you are
familiar with, and how you intend to use it. There’s really no clear
way to be prescriptive, unfortunately. Also, there is very active work
being done in this space—by the time any “Best Of ” list is pub‐
lished, it’s already out of date.

Luckily, trying a first run of any site generator usually takes only a
few minutes. We really advise that you to try several and always
browse the documentation for any design goals because those will
inform you about the problems the creators are working to solve.

Adding Automation
Taking the time to add in build automation is what makes JAMstack
development so productive and enjoyable.

All site generators have a build command that can be run from the
terminal. The final assets are usually compiled to a folder named dist
or build and then can be uploaded to almost any server or CDN. It’s
certainly possible to build and then upload assets manually—espe‐
cially early on. However, as you do more development and involve
more team members, you’ll find this approach doesn’t scale.

42 | Chapter 4: Planning for the JAMstack

We mentioned earlier that you can use a hosted Git repository for
your project to provide an online backup and to facilitate collabora‐
tion. But now we explore the third reason: triggering automated
builds via webhooks.

GitHub, GitLab, and Bitbucket are the three most popular reposi‐
tory hosting services and they all support webhooks. Webhooks are
a simple way for any event on a platform (such as a code push) to
trigger an HTTP POST to an external URL. When you set up your
webhook, you can determine the URL used. The payload of the
POST will contain JSON information about the event. The server
receiving the webhook uses that information to determine what
action to take.

For JAMstack sites, the most common action is to trigger a new
build of the website when anything is added or modified via a push
to the Git origin. Some more advanced deployment services will
even build previews of pull requests at dedicated URLs. This way,
teams can browse and test the changes before merging them. It’s also
possible for each branch of a repository to be built separately at
unique URLs. This is a powerful approach to staging environments
and working on feature branches.

Ideally, your automated build process will do the following:

1. Listen for notifications of changes to your Git repository (usu‐
ally via webhooks).

2. Prepare the build environment and fetch any required depen‐
dencies.

3. Fetch remote data from APIs (as needed).
4. Build the site and prepare assets.
5. Publish the final site to a CDN.

Using GitHub Pages and GitLab Pages
If you are hosting a project’s repository at GitHub or GitLab, you
might consider using GitHub Pages or GitLab Pages. Both are light‐
weight options that connect to your repositories and allow you to
automatically build and host a static website. Both support custom
domains.

Adding Automation | 43

GitHub Pages was originally launched to make developing sites and
documentation for the open source projects they host easier. If you
just need a simple website to explain your project, it’s a great option.
Note that GitHub Pages supports only the Jekyll site generator, and
only with specific plug-ins.

GitLab Pages supports a wider variety of static site generators, and
you can even build your own continuous integration (CI) pipeline to
deploy and host your website. GitLab also can be self-hosted if that’s
a requirement or interest of your organization.

Using Your Own Infrastructure
If you have existing infrastructure, you might decide to run your
own hosted build process on a server, virtual machine, or container.
There are many tools from continuous integration/continuous
development (CI/CD) that you can apply to automating the JAM‐
stack. If you are already running CI/CD infrastructure, you might be
able to plug JAMstack publishing into your existing workflows.

Using a Hosted Deployment Service
Because setting up a robust and resilient build system can be diffi‐
cult, a new category of service has emerged: hosted build services/
continuous integration. These services often have apps available for
GitHub and GitLab, making the integration with your repository
fairly painless. On some, you can select your own deployment target
(like Amazon Web Services Simple Storage Service); on others,
CDN and Domain Name System (DNS) services are baked in, pro‐
viding everything you need to both build and host your application.

You want a build service that’s secure and customizable. Most build
services will commonly create a temporary container, set up your
environment, grab any needed dependencies, run the build, deploy
the results, and then dispose of the container. It’s important that the
build service is aware of and supports your site generator, language
environment, and other tooling involved in building your website.
You’ll want to keep dependency settings files like Gemfile, pack‐
age.json, and composer.php accurate and up to date.

44 | Chapter 4: Planning for the JAMstack

Selecting a CDN
Even with all the modern advancements in network technologies,
performance for websites and applications still succumbs to the two
oldest foes of the internet: time and space. Thankfully, the JAMstack
approach of publishing directly to CDNs helps solve for both. First,
the time required to start serving content is greatly improved by
prerendering all the markup, as we discussed earlier. And second,
the amount of physical distance (and network hops) that content
must travel on the way to users is also reduced, thanks to the geo‐
graphically distributed nature of CDNs.

A CDN is a global collection of edge nodes located in different data
centers, all interconnected with fast, high-quality bandwidth. When
a user loads content from a CDN, they are always connected to the
closest edge node possible. And, of course, distributing your site
across multiple edge nodes also helps availability. If one or more
edge nodes, network interconnects, or even datacenters fail, your
site remains available.

Here are three considerations for choosing a CDN for your web
application:

Edge Locations
Publishing to a CDN usually means your site content becomes avail‐
able to a minimum of 10 or 15 locations worldwide. You’ll want a
CDN with edge locations close to your audience, so if you have users
in Tokyo, they experience your website served from Tokyo.

Instant Updates
CDNs used to work as fairly unintelligent caching layers in front of
web servers. Although they certainly sped up application perfor‐
mance, documents and images on the CDN were always given fairly
lengthy Time To Live (TTL) settings. When cache was set to last
hours or more, updates were delayed and purging the CDN to make
way for new content proved rather difficult. It was often a delicate
balance between allowing more dynamic content with frequent
updates versus using longer caching to reduce the load on origin
servers.

Modern CDNs now allow instant invalidation, replacing files in
milliseconds and blurring the lines between static content and

Selecting a CDN | 45

dynamic updates. If a near-instant update to CDN cache can be
guaranteed each time the site is deployed, TTLs and stale content
are no longer a concern. Today, rather than periodically pulling con‐
tent from an origin server, updates can be pushed to CDNs each
time the website changes. This advancement allows us to publish
directly to CDNs and bypass servers—a critical component of the
JAMstack.

Multiple Providers
Some CDNs locate their edge servers with multiple cloud providers,
increasing the durability of your application. Even though a com‐
plete datacenter outage is rare, they do happen. It’s also not uncom‐
mon for a provider to experience a Distributed Denial-of-Service
(DDoS) attack toward a particular facility or network. Ensure that
your CDN provider is not only distributed across the globe but also
across providers. Hosting on such a provider gives you the power of
a “cloud of clouds” for the most resilient setup possible.

Providing Functionality: APIs
Even though a JAMstack site can indeed be nothing more than a
collection of static assets, connecting your application to the vast
world of API-based services is what shows the true power and
promise of the JAMstack as an architecture for real-world applica‐
tions.

It wasn’t too long ago that authentication, payment processing, and
commerce were all concerns that you needed to host and manage
yourself. But today, each of those (and many more features) are now
consumable as APIs.

But how expensive will it be? What if the service goes down? How
difficult would it be to rip out and replace? These questions are
common when evaluating any hosted service, and it can feel daunt‐
ing to trust critical services to a third party. But consider that all the
questions above will also inevitably arise for teams that build or
manage technologies in-house.

It all comes down to choice and flexibility, and the move toward
decoupled, API-driven architectures (and away from monolithic
apps) offers teams the flexibility to decide what to consume and
what to build. That’s a powerful construct because each layer of the

46 | Chapter 4: Planning for the JAMstack

stack—from content, to commerce, to the frontend—can now be
vetted and chosen independently.

Let’s look at that in action.

Consider the needs of an ecommerce store. First, the site needs to be
fast and reliable, even under heavy load. The JAMstack’s ethos of
static pages published to a global CDN ensures incredibly high
marks in both speed and reliability. Without managing a fleet of
servers, you can keep pace with the performance offered by the
giants of ecommerce.

But equally important, you get full control over the entire frontend,
down to the very last <div> and pixel. You are free to design and
develop any page you can imagine, using the language, tools, and
templates of your choosing. Your team can build experiences
custom-tailored to your exact specifications. This is a very different
approach from fighting the markup output by a traditional server-
hosted ecommerce application.

Commerce, though, isn’t static. You’ll need a way to manage content
(in this case, items for sale), power search, manage available inven‐
tory, and allow customers to make purchases. On the JAMstack, we
use APIs to integrate services tailor-made for each component.

In the example flow shown in Figure 4-3, notice how content is
managed in a hosted CMS service called Contentful. Store owners
and editors use the Contentful interface to manage store listings and
upload photos. Contentful is termed a “headless” CMS because its
only concern is storing the content, not the display of it.

Figure 4-3. Sample JAMstack commerce setup

Adding a new item in Contentful triggers a new build of the website
using Netlify’s build automation. During the build step, Netlify
fetches the most recent store data from Contentful by calling the
API. That data is fed into a site generator (like Gatsby) to render out
each of the pages.

Providing Functionality: APIs | 47

Also during the build step, APIs are used to send data to Algolia, the
search provider, so the search index can be updated as the product
catalog changes.

As visitors browse the site, prerendered pages are pulled directly
from a CDN, with no running server process anywhere to be found.
So how is the site made interactive? By taking advantage of the
power of JavaScript to call APIs directly from the browser.

When a shopper types a search term, it’s fed to Algolia via Ajax, and
Algolia returns JSON with the results. Javascript is used to display
those results in whatever way we’d like to integrate them with our
application.

After the shopper clicks the buy button, the intent to purchase is
sent to a provider called CommerceLayer, whose job it is to power
the shopping cart and checkout experience. Again, this happens
using JavaScript to call APIs. Like Contentful, CommerceLayer is
also headless and makes no demands on our how application looks
and behaves.

There you have it: an entire commerce experience built by intercon‐
necting modular components via API calls. Because there is no
backend infrastructure to set up or manage, our entire time can be
spent creating the frontend application. And because everything
we’re using is a hosted service, a first prototype can be created in
about a day or two.

This is why you might have heard of the JAMstack providing
“superpowers” for frontend teams. Today, we can wire together rich,
enterprise-grade functionality using API services like the ones here.
But again, nothing is prescriptive on the JAMstack and there has
been an explosion of new API service offerings designed to power
just about any aspect of your project. In fact, you’ll find many tradi‐
tional players like Shopify now offer APIs so they, too, can be con‐
sumed in a headless fashion. The explosion of APIs speaks to the
momentum of the JAMstack as the architecture of the interconnec‐
ted web.

48 | Chapter 4: Planning for the JAMstack

CHAPTER 5

Shifting the Mental Model

A Mindset and an Approach
To adopt the JAMstack for your next project, your team will need to
have a good mental model of what the JAMstack means. There’s one
commonly held mental model to watch out for, as it’s not quite cor‐
rect:

The JAMstack delivers static sites.

This is a convenient, bite-sized summary. But it misses the mark.

Sites designed for the JAMstack are sites that are capable of being
served with static hosting infrastructure, but they can also be
enriched with external tools and services.

This small shift in mindset is a powerful thing. A static site is a site
that does not often change and does not offer rich interactions. But
JAMstack sites go far beyond offering static experiences—whether
that be through rapid iterations thanks to build automation and
low-friction deployments, or through interactive functionality deliv‐
ered by microservices and external APIs.

The ability to serve the frontend of a site from CDN infrastructure
optimized for static assets should be viewed as a superpower rather
than a limitation.

Although traditional, monolithic software platforms need to intro‐
duce layers of complexity for the sake of performance, security, and
scale, JAMstack sites embody this by default. And because their

49

technical design is based around the premise of being hosted stati‐
cally, we are able to avoid many of the traps that traditional infra‐
structure can fall afoul of when being scaled and hardened.

The six best practices presented in the following sections can help in
serving your sites from static infrastructure (without frontend web
servers) and propel your projects to use all the possibilities of the
JAMstack.

One: Get to the CDN
A Content Delivery Network (CDN) is a geographically distributed
group of servers that allows you to cache your site’s content at the
network edge, effectively bringing it much closer to users. Because
the markup is prebuilt, JAMstack sites don’t rely on server-side code
and lend themselves perfectly to being hosted on distributed CDNs
without the need for origin infrastructure.

A good CDN will have points of presence around the globe and is
therefore able to serve your content from locations geographically
close to your users, wherever they might be. This has a number of
benefits.

First, this promotes good performance. The shorter the distance
between the user making a request for content and the server that
responds to that request, the faster bytes can get from one to the
other.

Second, by replicating the content being served across many CDN
nodes around the world, redundancy is also introduced. Certainly,
we’d want to serve content to users from the CDN node closest to
them, but should that fail for any reason, content can instead be
served from the next nearest location. The network aspect of a CDN
provides this redundancy.

Third, by becoming the primary source for the content being served
to your users, a CDN prevents your own serving infrastructure from
becoming a single point of failure (SPoF) while responding to
requests. Do you recall the fear of your site quickly becoming popu‐
lar and attracting massive traffic levels? Oh, the horror! People
would talk about the ability to “survive being slash-dotted” or reach‐
ing mass adoption.

50 | Chapter 5: Shifting the Mental Model

Designing a web architecture to be resilient to large traffic loads and
sudden spikes in traffic has traditionally called for the addition of
lots of infrastructure. When your site isn’t equipped to offload the
serving of requests to a CDN, you must shoulder this responsibility
yourself. Often this results in an architecture that involves multiple
web servers, load balancers, local caching mechanics, capacity plan‐
ning, and various layers of redundancy. When the site is being
served dynamically and in response to individual requests, the coor‐
dination of these resources can become very complex. Specialist
teams are generally required to do this properly at scale, and their
job is never complete given the need for ongoing monitoring and
support of the machinery that will service every request for a site.

Meanwhile, CDNs are in the business of servicing high volumes of
traffic on our behalf. They are designed to offer redundancy, invisi‐
ble and automatic scaling, load balancing, caching, and more. The
emergence of specialist CDN products and services brings opportu‐
nities to outsource all of this complexity to companies whose core
business is providing this type of resilience and scale in ways that do
not require you to manage the underlying infrastructure.

The more of our site’s assets we can get onto a CDN, the more resil‐
ient it will be.

Designing for the Best Use of a CDN
How do we design our applications to get the best results from using
a CDN?

One approach is to serve just the containing user interface (UI) stat‐
ically from the CDN and then enrich it entirely with client-side Java‐
Script calls to content APIs and other services. This works
wonderfully for some applications or sites where the user is taking
actions rather than primarily consuming content. However, we can
improve performance and resilience if we deliver as much content as
possible in the document as prerendered HTML. Doing this means
that we do not depend on additional requests to other services
before core content can be displayed, which is good for performance
and fault tolerance.

The more complete the views we can deliver to the CDN and pass
on to the browser, the more resilient and performant the result is
likely to be. Even though we might be using JavaScript in the
browser to enrich our views further, we should not forget the princi‐

One: Get to the CDN | 51

ples of progressive enhancement, and aim for as much as possible to
be delivered prerendered in the initial view of each page.

When designing the technical approach to web applications, there
are a few commonly used terms that seem to be regularly confused.
We’ve alluded to a couple of them in the previous chapters, but it is
worth taking a moment to clarify the differences between some of
these common terms:

• Client-side rendering
• Server rendering
• Prerendering

Client-side rendering is performed in the browser with JavaScript.
This term is not used to refer to the work that browsers do by
default to render HTML documents; instead, it describes the process
by which JavaScript is used to manipulate the Document Object
Model (DOM) and dynamically manipulate what the browser dis‐
plays. It has the advantage of allowing user actions to immediately
influence what is displayed, and it also can be very efficient in com‐
bining data from many different sources into templated views. Web
browsers, though, are not as tolerant to errors found in JavaScript as
they are with HTML. Where possible, it is prudent to deliver as
much content as possible already rendered into HTML on the
server, which then can be further enriched and enhanced with Java‐
Script in the browser.

Server rendering refers to the process whereby a server responds to
requests for content by compiling (rendering) the required content
into HTML and delivering it on demand for the browser to display.
The term is often used as the antithesis of client-side rendering,
when data (rather than ready-generated HTML) is delivered into the
browser where it must then be interpreted and rendered into HTML
or directly manipulate the browser’s DOM via JavaScript. (Client-
side rendering such as this is common in single-page applications
[SPAs].) Server-rendering typically happens just-in-time based on
what requests are being made.

Prerendering performs the same task of compiling views of content
as we see in server rendering, but this is carried out only once and in
advance of the request for the content. Rather than awaiting the first
request for a given piece of content before we know if the result will
be correct, we can determine this at build time.

52 | Chapter 5: Shifting the Mental Model

Decoupling this rendering or generation of views from the timing
(and machinery) at request time allows us to expose the risk early
and tackle any unknowns of this operation far in advance of the
times a request for the content is made by a user. By the time
requests for prerendered content arrives, we are in a position to sim‐
ply return the prebaked response without the need to generate it
each time.

Two: Design for Immutability and Atomic
Deployments
By generating a site comprising assets that can be served statically
from a CDN, we have set ourselves on an easier path to optimizing
for performance and sidestepping many common security attack
vectors. But it is very likely that our site builds will contain a large
number of files and assets, all of which will need to be deployed in a
timely and confident manner.

The next challenge, therefore, is to establish very low friction and
efficient deployment processes to deal with the propagation of so
many assets.

When we make the process of deploying a site fast with minimal
risk, we unlock greater potential in the development and publishing
process, which in turn can yield more efficient and effective devel‐
opment and release cycles.

Confidence from Immutability
It was once very common to deploy sites via FTP. It felt simple and
convenient, but this method was the root of many problems.

The action of moving files and folders from one server to another
over FTP would change the state of the production server, updating
its published web root folder to include the new or updated files and
mutating the state of the production environment more and more
over time.

Mutating the condition of a production environment might not
seem like a problem. After all, the reason we deploy new code is to
make changes in our production environment and develop the
experience for our users by introducing new content, new designs,
or new functionality. But this type of deployment is destructive.

Two: Design for Immutability and Atomic Deployments | 53

After each deployment, the previous state of the environment is lost,
meaning that reverting to the last good state of the site could be dif‐
ficult or impossible to do.

The ability to revert is critical. Without it, we need to be able to
guarantee that every deploy will be perfect, every time. That’s a
lovely goal, but experience tells us that we can’t assure that with
100% confidence, and that the ability to quickly address problems
resulting from a deployment is essential.

If we combine mutable deployments and managing our own com‐
plex hosting infrastructure, the potential issues are compounded
further, with deployments potentially resulting in sites that have
unknown versions being served to different users, or errant code
being propagated to some parts of the infrastructure and not others,
with no clear path to identify what has changed and how to address
problems.

To minimize the risks associated with hosting environments serving
assets jumbled together from a variety of deployment events, the
industry began to discard mutable deployments, in which the site’s
web root could change over time, and instead favor immutable
deployments where a new version of the entire published web root
would be compiled and published as a discrete entity, as illustrated
in Figure 5-1.

Figure 5-1. Mutable versus immutable deploys

The Advantages of Immutable Deployments
Whereas mutable deployments modify the code and state of our
environments, changing them gradually over time, immutable
deployments are different. They are delivered as entirely self-

54 | Chapter 5: Shifting the Mental Model

contained sets of assets, with no dependency on what came before,
and associated with a moment in time in our version control system.
As a result, we gain confidence and agility.

Know what you’re deploying
Confidence comes from knowing that what we are deploying is what
will be served by our production environment. Without immutable
deployments, each deployment changes the state of what lives in the
production environment and is being served to the world. The live
site ends up being the result of a compounded series of changes over
time. The actions taken in each of our environments all contribute
to that compounded series of changes, so unless every action in
every environment is identical, uncertainty will creep in. (We men‐
tion production, but this applies to every environment, such as
development, staging, testing, and so on).

The actions we take over time are aggregated into what is ultimately
published from each environment.

In contrast, an immutable deployment process removes this uncer‐
tainty by ensuring that we create a series of known states of our web‐
site. Encapsulated and self-contained, each deployment is its own
entity and not affected by any actions taken in the environment pre‐
viously. Each deployed version persists unadulterated, even after
subsequent deployments. Compound effects in environments are
avoided so that we can gain the certainty and confidence lacking in
mutable deploys.

Switch between versions anytime
It might seem cumbersome to generate and deploy an entirely new
build each time we want to make even a small change to our sites,
but because this leaves previous deployments intact, we gain the
ability to switch between different versions of our site at any time.

And by automating and scripting the build and deployment pro‐
cesses, we can drop the friction associated with building and deploy‐
ing sites to close to zero, making this process far less cumbersome.
Regularly running builds even helps to prove the validity of our
build process itself, ensuring that our build and deployment process
is robust and battle hardened far in advance of launch day.

The agility to roll back to a previous build or to stage a new build in
our environment for testing before designating it the new produc‐

Two: Design for Immutability and Atomic Deployments | 55

tion version, cultivates an environment in which the risks involved
in performing deployments are reduced. By avoiding unrecoverable
failures that are the result of a deployment, agility and innovation
are given room to thrive on projects. It creates a very constructive
development experience rooted in the confidence that our target
environments are not fragile, and that they can withstand the
demands of active development work. Certainly, we would wish to
minimize the risk of any errors being published, but it can happen.
With atomic deployments, we dramatically decrease the cost of an
error by making it trivial to revert to a previous good state of our
site.

Positioning for Immutable Deployments
By choosing the JAMstack for a project, you’re already well suited to
a deployment process that yields immutable deploys. The build pro‐
cess for the project will generate a version of the site and its assets
that is ready to be placed into a hosting environment.

Decoupling that which can be hosted statically from the moving
parts of a project that might manage state or contain dynamic con‐
tent is a critical step. There is a natural decoupling inherent in JAM‐
stack sites, for which data sources and APIs are either consumed at
build time, or abstracted to other systems, possibly provided by
third parties.

The ability to achieve an immutable deployment process will also
depend on the nature of the hosting environment. No matter how
we transmit our assets to that environment, it must be configured to
generate a new site instance each time changes are deployed to it.

Atomic Deployments
A challenge with creating multiple, immutable versions of our
deployments is that the action of deploying a new version of our
site, even a one-line change, requires the generation and propaga‐
tion of a completely fresh instance of the entire site. This could
result in the transmission of a lot of files, taking a lot of time and
bandwidth. In traditional mutable deployments, this could result in
files from many different deployments being served together, with
no protection against interdependencies not being synchronous.

To address this, a good practice is to employ atomic deployment
techniques.

56 | Chapter 5: Shifting the Mental Model

An atomic deployment is an all-or-nothing approach to releasing
new deployments into the wild. Figure 5-2 shows that as each file is
uploaded to its hosting infrastructure, it is not made available pub‐
licly until every single file that is a member of that deployment is
uploaded and a new, immutable build instance is ready to be served.
An atomic deployment will never result in a partially completed
build.

Figure 5-2. Traditional versus atomic deploys

Most good CDN providers offer this service. Many of them use
techniques to minimize the number of individual files being trans‐
mitted between their nodes and the origin servers which seed all of
the caching. This can become tremendously complex for sites that
are not designed as JAMstack sites, and considerable specialist skills
are required to do this correctly when the files in question are popu‐
lated dynamically.

JAMstack sites are well suited to such techniques because they will
avoid the considerable complexity of needing to manage the state of
databases and other complex moving parts throughout deploy‐
ments. By default, the files that will be distributed to CDNs are static
files rather than dynamic, so common version control tooling can
allow CDNs to consume and distribute them with confidence.

Two: Design for Immutability and Atomic Deployments | 57

Three: Employ End-to-End Version Control
The success of any development project can be compromised when
robust version control management, such as Git, is not in place. It is
common in web development for projects to employ version control
throughout the development process, but then not extend the same
version control conventions into the deployment process itself. Her‐
oku, a popular cloud application platform, popularized the use of
Git workflows as a means to perform a deployment, raising the con‐
fidence in a reliably deployed end product.

Having the version control reach all the way to deployment can help
to minimize the opportunities for untracked, unrepeatable, or
unknown actions to creep into the processes and environments.

A dependency on databases and complex applications can make the
task of this kind of end-to-end version control more difficult. But
because JAMstack sites don’t rely on databases, it’s far easier to bring
more aspects of the code, content, and configuration under the
umbrella of version control. Further, the use of the version control
system itself can become the primary mechanic for doing every‐
thing from initiating and bootstrapping a project, right through to
staging and deploying the code and the content.

Every aspect of a project that we can bring into version control is
one less thing that is likely to get out of control.

Reducing the Cost of Onboarding
Bringing new developers into a project can be a time-consuming
and error-prone activity. Not only do developers need to understand
the architectural conventions of the project, they must also learn
what dependencies exist, and acquire, install, and configure all of
these before any work can begin.

Version control tools can help. By tracking all of the project’s depen‐
dencies in version control and ensuring that any configuration of
these dependencies is also captured in code and version controlled,
we can apply some popular conventions to simplify the bootstrap‐
ping of projects and the onboarding process.

Ideally, a developer arriving onto a new project would be able to get
up and running with minimal intervention. A good experience for a
developer might look like this:

58 | Chapter 5: Shifting the Mental Model

1. Gain access to the project code repository.
2. Find up-to-date, versioned instructions on bootstrapping the

project within the code repository, typically in a README file.
3. Clone the repository to a local development environment.
4. Run a single command to install project dependencies.
5. Run a single command to run a local build with optimizations

for the designed development workflow.
6. Run a single command to deploy local development to suitable

target environments.

Maintaining onboarding documentation in a README file within a
project’s code repository (rather than in another location) helps with
its discoverability and maintenance. That’s a good first step, but the
other items on this list might seem more challenging.

Thankfully, the rise of package managers such as npm and Yarn
have popularized the techniques that can help here. The presence of
a package.json file in a project’s root directory (which defines the
various dependencies, scripts, and utilities for a project) combined
with suitably descriptive documentation as part of the version-
controlled code base can allow a developer to run single commands
to perform the dependency installation, local build, and even
deployments.

This approach not only allows for the automation of these activities,
but also documents them in a way that is itself versioned. This is a
huge benefit for the health of a project over its lifetime.

Figure 5-3. Common development workflow

Three: Employ End-to-End Version Control | 59

Making Version Control the Backbone of Your Project
Unseasoned approaches to version control can lead to a code reposi‐
tory being used mainly as a central store for the purpose of backing
up code. This attitude was once very common and addressed only
one narrow aspect of software development. These days, it is more
common for development teams to harness the power of version
control and use it as the underlying process for orchestrating and
coordinating the development, release, and even the deployment of
web projects.

Actions and conventions at the core of a tool such as Git—like com‐
mitting, branching, making pull requests, and merging—already
carry significant meaning and are typically being used extensively
during the natural development life cycle. And yet, it is common for
monolithic applications to invent their own solutions and workflows
to solve similar challenges to those already being addressed by Git.

Rather than doing that, and adding another layer of process control
that requires teams to learn new (and analogous) conventions, it is
far more productive to use the Git activity to trigger events in our
deployment systems.

Many continuous integration (CI)/continuous deployment (CD)
products can now work this way. Activities like pushing code to a
project’s master branch can trigger a deployment to the production
environment.

Instead of limiting Git to a code repository, we should employ it as
the mechanism that drives our releases and powers our CI/CD tools.
This anchors the actions taken in our development and deployment
processes deeply in version control, and consolidates our actions
around a well-defined set of software development principles.

When choosing a platform for CI/CD and deployment manage‐
ment, seek out such platforms that support Git-based workflows to
get the best from these conventions.

Four: Automation and Tooling
A key to making JAMstack sites go beyond static is dramatically eas‐
ing their building and deployment processes through automation.
By making the task of deploying a new version of a site trivial, or
even mundane, we significantly increase the likelihood that it might

60 | Chapter 5: Shifting the Mental Model

be regularly updated with content, code fixes, and design iterations
throughout its lifetime.

This principle is true for web development projects on all stacks, but
in more traditional, dynamic stacks, the lack of good deployment
automation is more often overlooked because content updates can
still typically be made without a full code redeployment. This can
provide a false sense of security on dynamic sites, which become a
problem only when an issue is discovered or a more fundamental
change is planned for deployment.

By contrast the JAMstack is well suited to scripting and automation
during both the build (or site generation) stage and the deployment
stage.

Static site generators exist as tools that we run to compile our tem‐
plates and content into a deployable site. By their very nature, they
are already the seed of an automation workflow. If we extend this
flow to include some other common tasks, we begin to automate our
site generation process at the very beginning of our development
process and iterate it over the life of a project.

With a scripted site generation and deployment process in place, we
can then explore ways to trigger these tasks automatically based on
external events, adding a further level of dynamism to sites that still
have no server-side logic at runtime.

A Powerful Site-Generation Pattern
The tools used for automating a site build can be a matter of per‐
sonal preference. Popular options include Gulp, Grunt, or Webpack,
but simpler tools like Bash or Make can be just as effective.

Let’s look at an example of some tasks that might be automated in
the build script of a JAMstack site to produce a more dynamic site:

1. Gather external data and content from a variety of APIs.
2. Normalize the structure external content and stash it in a for‐

mat suitable for consumption by a static site generator.
3. Run the static site generator to output a deployable site.
4. Perform optimization tasks to improve the performance of the

generated assets.
5. Run the test suite.

Four: Automation and Tooling | 61

6. Deploy output assets to the hosting infrastructure or CDN.

Figure 5-4 shows this process.

Figure 5-4. Typical build process

This pattern is powerful, especially if it can be triggered by external
events. The first step in the pattern we describe here is to gather
external content from APIs. The content sources that we are con‐
suming here might be numerous. Perhaps we’ll be using content
from a headless CMS or the RSS feed of a news site. Perhaps we’ll be
including recent content from a Twitter feed or other social media
feeds. We might include content from an external comments system
or a digital asset management system. Or all of these!

If we also initiate this automated site build whenever a change
occurs to any of the content sources that we will be consuming, the
result will be a site that is kept as fresh and as up-to-date as any of its
content sources.

An increasing number of tools and services now support publishing
and receiving webhooks. Webhooks are URL-based methods of trig‐
gering an action across the web. They can create powerful integra‐
tions of services that otherwise have no knowledge of one another.
With a webhook you can do the following:

• Trigger a build in a CI system
• Trigger an interactive message in a messaging platform such as

Slack
• Notify a service that content has been updated in a headless

CMS such as Contentful

62 | Chapter 5: Shifting the Mental Model

• Execute a function in a Functions as a Service (FaaS) provider
such as Amazon Web Services (AWS) Lambda, Google Cloud
Functions, or Microsoft Azure Cloud Functions.

By combining these types of tools and building upon an event-
driven model to perform automated tasks, things are starting to
become a lot less “static” than we might once have expected.

Minimizing the Risk of Human Intervention
Automation is not purely about doing repeatable tasks quickly. It
turns out that humans are pretty bad at doing the same task over
and over again without making mistakes. Removing ourselves from
the build and deployment process is a good way to reduce errors.

Seek out opportunities in your deployment processes where repeti‐
tive tasks can be performed by a script.

It’s very common to plan for a time late in a project to do this kind
of automation, but we recommend doing it early. This will do the
following:

• Create basic documentation of your processes by codifying
them

• Introduce version control into your deployment process itself
• Reduce the risk of human error for every time you deploy
• Begin to instill a project culture in which deployments are not

heralded as rare, complex, and risky operations

Five: Embrace the Ecosystem
Not only are there tools and services for continuous integration,
global deployments, and version control, there are also all sorts of
more exotic and ambitious tools and services. The immediacy and
affordability of such services is impressive, and they bring incredible
breadth and variety in the ways that they can be combined and
remixed to create innovative new solutions to once-complex and
expensive web development challenges.

One of the key reasons that we need a more descriptive term than
“static” to describe JAMstack projects is this rapid growth in the eco‐
system rising to support and extend the power of this approach.

Five: Embrace the Ecosystem | 63

Once, when we talked about “static” sites, we would most likely rule
them out as candidates for specific use cases on the basis of some
common stumbling blocks. Requirements like search, forms, notifi‐
cations, or payments would rule out a static architecture for many
sites. Thankfully, as the ecosystem has expanded, solutions to all of
these requirements have emerged, allowing developers and technical
architects to go far beyond what they might once have considered
possible on the JAMstack.

As a way of exploring the concepts a little, let’s talk about some
examples of common requirements that used to deter people from
pursuing a JAMstack model.

Forms
This is the classic and possibly the most common requirement likely
to cause a technical architect to decide that static hosting infrastruc‐
ture would not be sufficient. It’s also perhaps the cause of the most
dramatic overengineering.

That may be a surprising statement. After all, form handling is rela‐
tively simple and a very common feature on the web. It’s not really
something that we associate with overengineering.

When the introduction of this feature demands that a site that might
otherwise be delivered directly from a CDN (with no need for logic
running at a server) shifts to being hosted on a server complete with
all the overhead that incurs, simply to be able to handle HTTP post
requests and persist some data, the introduction of an entire server
stack represents a huge increase in platform complexity.

A multitude of form-handling services have emerged. Ranging from
JavaScript drop-ins to more traditional synchronous HTTP requests
with API access, the community has noticed how common this
requirement is and found a multitude of ways to deliver without the
need for a hosted server. Consider products like Wufoo, Formkeep,
Formcarry, or even Google Forms.

Search
A search facility on a site can vary dramatically in complexity. Often
search can be simple, but in some situations, search features need to
be advanced, including a wide variety of ways to determine results
and inspect complex relationships within the content of a site.

64 | Chapter 5: Shifting the Mental Model

https://www.wufoo.com/
https://formkeep.com/
https://formcarry.com/
https://www.google.com/forms/about/

There are approaches to handle both ends of this spectrum.

Most static site generators have the capability of producing different
representations of the content of a site. We can use this to our
advantage by generating a search index of the site at compilation
time, which then can be queried using JavaScript directly in the
browser. The result can be a lightning-fast live search that responds
as you type your search queries.

For more sophisticated search facilities, services like Algolia can
provide extensive content modeling and be customized to include
data insights (with knowledge of your site’s taxonomy), provide
fuzzy matching, and more. From small sites to large enterprises,
Algolia has identified the value in providing powerful search and
bringing it to all types of technology stacks, including the JAMstack.

There are also ways of scoping the search of the established search
engines such as Google or Duck Duck Go to provide search within a
given site or domain. This can provide a functional and efficient
fallback for when JavaScript is not available, and is the most direct
and simple implementation to provide search capabilities to a site.

Notifications
The need to contact users often introduces complexity to the stack.
As with search and forms services, a number of companies have
identified this and have established products and services to provide
this facility without the need to own the finer details and risks.

Companies like SendGrid and Mailgun can add email messaging
and are already trusted by a long list of technology companies that
would rather not manage and integrate their own email messaging
systems into their sites and services. Going further, companies like
Twilio can add sophisticated messaging that goes far beyond just
email. SMS, voice, video, and interactive voice response (IVR) are all
possible through APIs.

Identity
The ability to authenticate a user’s identity and grant different per‐
missions through some form of authentication system underpins a
wide variety of features usually associated with a traditional technol‐
ogy stack.

Five: Embrace the Ecosystem | 65

https://cse.google.com/
https://duckduckgo.com/search_box
https://sendgrid.com/
https://www.mailgun.com/

Managing user data, particularly personally identifiable information
(PII) requires a great deal of care. There are strict rules on how such
information should be retained and secured, with significant conse‐
quences for organizations that fail to satisfy suitable compliance and
regulatory levels. Outsourcing this capability was not always desira‐
ble because this could be seen as giving away precious customer
information.

Fortunately, practices have now evolved to allow for the successful
decoupling of identity services such that they can be effectively pro‐
vided by third parties without exposing sensitive customer data.
Offloading some of the rigorous compliance and privacy require‐
ments to specialists can bring identity-based features into the reach
of projects and companies that otherwise might not be able to
deliver and maintain them.

Technologies and identity providers such as OAuth and Auth0 can
make this possible and allow for safe client-side authentication and
integration with APIs and services. We dig into some examples of
this in the next section.

Six: Bridging the Last Gaps with Functions as a
Service
As you can see, we have an expanding set of tools and services avail‐
able to us. We don’t need to reinvent or reimplement each of them in
order to add their capabilities to our sites. Search, user-generated
content, notifications, and much more are available to us without
the need to own the code for each. But not every one of these serv‐
ices can be integrated into our sites without some logic living some‐
where.

Functions as a Service (FaaS; often called serverless functions) can be
the ideal solution to this and can be the glue layer that binds many
other services together.

By providing us with the means to host functions and invoke them
when needed, serverless providers extend the JAMstack even further
while liberating us from the need to specify or manage any type of
hosting environment.

66 | Chapter 5: Shifting the Mental Model

Being Comfortable with Breaking the
Monolith
It is often remarked that being a web developer means that you need
to always be learning new things. This pace is not slowing down.
Thankfully, however, we don’t all need to be experts in all things.

One of the joys of breaking apart the monoliths of old is that we can
hand over the deep domain expertise of aspects of our development
projects to those who specialize in providing just those targeted
services. At first, it can feel uncomfortable to hand over the respon‐
sibility, but as the ecosystem of tools and services matures, that dis‐
comfort can be replaced by a refreshing feeling of liberation.

By embracing the specialist services available, we can take advantage
of incredibly sophisticated and specialized skills that would be
impossible to retain on each and every one of our projects were we
to attempt to bring them all in-house.

Naysayers might describe concerns about relinquishing control and
accountability. This is a reasonable thing to consider, and we’d be
well advised to retain control over the services that we can provide
more efficiently, securely, comprehensively, and cost-effectively than
external providers. However, the areas where this is truly the case
are not as numerous as we might imagine, especially when factoring
in things like ongoing support, maintenance, data privacy, and legal
compliance. Although it might seem counterintuitive at first, by
employing the specialized skills of, say, an identity provider, we can
avoid the need to intimately understand, build, and maintain some
of the more nuanced areas of providing identity, authentication, and
authorization.

Instead, by using external solutions providers to deliver this capabil‐
ity to our projects, we can refocus our efforts away from reimple‐
menting a common (yet, complex and numerous) set of features and
functionalities, and focus instead on other areas of our projects
where we might be able to truly differentiate and add measurable
value.

The core intellectual property of your website is unlikely to reside in
the code you write to implement how a user changes their password,
uploads their profile picture, or signs in to your site. It is far more

Being Comfortable with Breaking the Monolith | 67

likely to reside in your content or your own set of services that are
unique to you and your business.

As the ecosystem of tools as service available to JAMstack sites
grows larger, we see the approach expand into areas traditionally
dominated by monolithic, server-intensive architectures.

Selecting which features of a given project are good candidates for
being satisfied by third-party services does require some thought.
We’ve mentioned just a few here and there are many more. Consid‐
ering the total cost of ownership for given services required by your
site is important. Do the providers you are considering have suitable
terms of service? Can they provide a suitable Service-Level Agree‐
ment? How does the cost of that compare to that if you were to build
and maintain this for yourself?

More and more regularly, economies of scale and domain expertise
mean that providers can be more affordable and dependable than if
we were to build comparable solutions ourselves. It is usually easier
to imagine the possibilities from embracing and utilizing the
expanding ecosystem of tools and services in the context of a real-
world example. By exploring how you might design an approach to
delivering a real project, with a well-defined set of functional and
nonfunctional requirements, you can explore how the JAMstack can
be applied to bring significant improvements to an established pres‐
ence on the web.

In Chapter 6, we do just that. We examine how various third-party
services were utilized and combined using serverless functions and
various automations. We don’t pick a small or simplistic site, either.
Instead, we explore a genuine project on a rich, complex, and for
many web developers, beloved website.

68 | Chapter 5: Shifting the Mental Model

CHAPTER 6

Applying the JAMstack at Scale

A Case Study: Smashing Magazine
Smashing Magazine has been a steady presence in the frontend
development space for more than a decade, publishing high-quality
content on themes like frontend development, design, user experi‐
ence (UX), and web performance.

At the end of 2017, Smashing Magazine completely rewrote and
redesigned its site to switch from a system based on several tradi‐
tional, monolithic applications to the JAMstack. This chapter show‐
cases how it solved challenges like ecommerce, content
management, commenting, subscriptions, and working with a JAM‐
stack project at scale.

The Challenge
In its 10 years of operation, Smashingmagazine.com has evolved
from a basic Wordpress blog to a large online estate, spanning mul‐
tiple development platforms and technologies.

Before the relaunch, the main magazine was run as a Wordpress
blog with thousands of articles, around 200,000 comments, and
hundreds of authors and categories. Additionally, the Smashing
team ran an ecommerce site selling printed books, ebooks, work‐
shops, and events through a Shopify store with a separate imple‐
mentation of its HTML/CSS/JavaScript theme. The magazine also
operated a Ruby on Rails app as its job board (reimplementing the

69

https://www.smashingmagazine.com/
http://Smashingmagazine.com

Wordpress theme to work in Rails, with Embedded Ruby [ERB]
templates) and a separate site built with a flat-file Content Manage‐
ment System (CMS) called Kirby (which brought an additional PHP
stack, not necessarily in step with the PHP stack required by the
main Wordpress site) for handling the online presence of Smashing
Conference.

As Smashing’s business grew, its platforms could not keep pace with
its performance requirements; adding new features became unsus‐
tainable. As the team considered a full redesign of Smashing Maga‐
zine together with the introduction of a membership component
that would give members access to gated content and discounts on
conferences, books, and workshops, there was a clear opportunity to
introduce a new architecture.

Key Considerations
From the project’s beginnings, Smashing Magazine sought to
enhance the site with a better approach to templating; better perfor‐
mance, reliability, and security; and new membership functionality.

Duplicated Templates
All themes had to be duplicated among Wordpress, Rails, and Shop‐
ify, each of which adds its own individual requirements to the
implementation; some could be built out as more modern and front‐
end friendly, with a gulp-based, task-running workflow. Some had
to be in standard Cascading Style Sheets (CSS) with no proper pipe‐
line around it. Some needed to work within a Rails asset pipeline
where making changes to HTML components involved changes in
PHP, Liquid template files, and ERB template files with different lay‐
out/include structures and lots of restrictions on what HTML the
different platforms could generate. To be maintainable, and to pro‐
mote consistent results across the site, a single, common approach
to templates and their build pipeline would need to be established.

Performance, Reliability, and Security
Smashing Magazine went through constant iterations of its caching
setup to avoid outages when an article went viral. Even after consid‐
erable efforts, the site still struggled to reach acceptable uptime and
performance goals. This effort introduced a great many plug-ins,
libraries, and dependencies for Wordpress, Rails, and Kirby, result‐

70 | Chapter 6: Applying the JAMstack at Scale

ing in a constant uphill battle to keep numerous Wordpress plug-
ins, Ruby Gems, and other libraries up to date without causing
breakage to themes or functionalities. To achieve a suitable level of
performance, in a responsible, robust, and manageable way, this
architecture had to be simplified and consolidated with Smashing
Magazine taking ownership of fewer languages and technologies.

Membership
One of the important goals of the redesign was the introduction of
the Smashing membership, which would give subscribers benefits
across the platform, such as an ad-free experience, discounts on
books and conferences, access to webinars and gated sections of the
site, and a member indicator when posting comments. However,
each of the applications making up Smashing Magazine were mono‐
lithic systems that applied a different definition of user. For mem‐
bership to be supported and for the different parts of the Smashing
Magazine ecosystem to be sustainable, a unified definition of a user
would need to be established.

Picking the Right Tools
Taking into account the key considerations, Smashing Magazine
began exploring an architecture in which the frontend lives in just
one repository and one format, all content pages are prebuilt and
live on a CDN, individual microservices handle concerns like pro‐
cessing orders or adding comments and identity of users, and mem‐
bers can be delegated to one microservice. The JAMstack.

The first step in the process was to build the right core tools, partic‐
ularly the core static site generator, a frontend framework for the
dynamic components, and an asset pipeline to make it all work well
together. After these were established effectively, this set of core
tools would enable the use of any number of microservices.

Static Site Generator
To build out all articles, categories, content pages, author pages,
event pages with speaker and talk details, as well as RSS feeds and
various legacy pages, Smashing Magazine needed a static site genera‐
tor with a very flexible content model. Build performance was also a
key constraint because each production build would need to output
tens of thousands of pages in total.

Picking the Right Tools | 71

Smashing Magazine evaluated several static site generators. It
explored tools like Gatsby and React Static that included an asset
pipeline and are based on Webpack. Those provide straightforward
support for writing pure, client-side components in the same lan‐
guage as the templates for the content-based site. However, the per‐
formance when it came to pushing out tens of thousands of HTML
pages in every build was not quite there.

Ultimately, the need to achieve a rapid build time combined with the
complex content model made Hugo the first choice. It was an ideal
combination of performance and maturity.

Hugo can generate thousands of pages in seconds; has a section-
based content model; a taxonomy system that allows many forms of
categories, tags, related posts, and so on; and a solid pagination
engine for all listings. Many of the JavaScript-based generators are
working to provide better support for incremental builds and large-
site performance, but at the time of this writing, none of them could
compete with Hugo in terms of its build speed, and they all fell short
of the performance that Smashing felt comfortable with for a site of
this volume.

There are potential workarounds to the challenge of needing to gen‐
erate a very large number of pages in the build, like only prebuilding
some of the content and fetching the rest client side from a content
API. But because Smashing Magazine is in the business of publishing
content, serving that content in the most robust and discoverable
way would be essential. To avoid disrupting the search rankings of
older reference articles, it was decided that content should be pre‐
built and ready on a CDN without the need for any client-side Java‐
Script for rendering core content or basic browsing. Hugo was the
only tool that was fully geared to meet the challenge with this
amount of content.

Asset Pipeline
A modern asset pipeline is what allows us to use transpilers, post-
processors, and task runners to automate most of the work around
actually building and delivering web assets to the browser in the best
possible way.

While many static site generators come with their own asset pipe‐
lines, Hugo does not. The Smashing team would need to create its

72 | Chapter 6: Applying the JAMstack at Scale

https://gohugo.io/

own if it wanted support for bundling, code splitting, using ES6 with
npm, and SCSS for CSS processing.

Webpack has become more and more of a standard for handling the
bundling, code splitting, and transpilation of JavaScript, and it felt
like an obvious choice to handle all of the JavaScript processing on
this project. However, when it comes to preprocessing SCSS to CSS,
Webpack is better suited for use with projects designed as single-
page applications (SPAs) than for content-based sites like Smashing
Magazine. Webpack’s tendency to center around processing Java‐
Script and “extracting” the CSS referenced in the JavaScript modules
makes it less intuitive to use on a project such as this and better
suited for use with tools like Gatsby where assets are always refer‐
enced from JSX files.

The efficiency of the CSS workflow can have a huge impact on
developer experience and the success of a project like this. At the
beginning of the project, Sara Soueidan, a talented Smashing Maga‐
zine developer with extensive CSS skills, had built a CSS/HTML pat‐
tern library that would form the basis of the site. It was important to
ensure that she could work with the same setup as the final site so
that she could simply start building out pages using the same parti‐
als and as the pattern library.

To make this work, Smashing connected with a team versed in cre‐
ating open source projects to support the viability and growth of the
JAMstack. That team built out a small framework called “Victor
Hugo,” “A boilerplate for creating truly epic websites!”

Victor Hugo is based on a core of Gulp as a task manager, orches‐
trating CSS compilation via Sass, and Hugo builds whenever a tem‐
plate changes, and processing JavaScript via Webpack whenever a
source file is updated. It also offers us a general task runner for
maintenance tasks and similar automated processes along the way.

Frontend Framework
The next step was to introduce a frontend framework. Your first
thought at this point might be “why?” Wouldn’t just using progres‐
sive enhancement with a bit of vanilla JavaScript be good enough for
a content-driven site like Smashing Magazine?

For the core experience of the magazine—the shop catalog, the job
board, event pages, and so on—this was indeed the approach. The

Picking the Right Tools | 73

https://github.com/netlify/victor-hugo
https://github.com/netlify/victor-hugo

only JavaScript involved in this part of the project was built with a
progressive enhancement approach and used for things like loading
new articles inline or handling details like triggering pull quote ani‐
mations on scroll and so on.

But Smashing Magazine is far more than just a magazine, with fea‐
tures like ecommerce, live search, commenting, and sign-up flows
all requiring dynamic user interface (UI) elements. Without a rigor‐
ous, well-organized, and logical architecture and development
approach, such complexity could quickly result in a nightmare of
unmaintainable spaghetti. An effective, modern frontend frame‐
work needed to be in place in order to allow the development team
to execute as planned. Being unimpeded by the compromises and
overheads typically encountered when integrating with traditional
monolithic platforms would be a huge boon for the development
process, resulting in a far more logical and maintainable codebase.

At the same time, Smashing Magazine is not an SPA that can better
afford to load a massive JavaScript bundle on first load to rely on in-
browser page transitions from then on. A content-driven site needs
to optimize for very fast performance on first view for all content-
based parts of the site, and that means the framework must be tiny.

Preact fits that bill! It’s a 3 KB component framework (gzipped)
that’s API-compatible with React. In comparison, jQuery weighs in
at around 28 KB (gzipped).

This brought a modern component-based framework with the
familiar interface of React to the table. Using Preact, the team could
build interactive elements like the flows for ecommerce checkout or
sign-up/login/recover password processes entirely client side—and
then use Ajax to call specific microservices when an order is trig‐
gered or a login form is submitted.

We dig into those details shortly, but first it is worth turning our
attention to the content that Smashing Magazine would be serving
through this web experience.

Content Migration
In the previous version of Smashing Magazine, the content lived in
several different binary databases. Wordpress had its own database
in which most content was stored in a wp_posts collection with ref‐
erences to metadata and author tables. Shopify had an internal data‐

74 | Chapter 6: Applying the JAMstack at Scale

https://preactjs.com/

base storing books, ebooks, its categories, and a separate set of
authors for those. The job board stored data inside yet a third data‐
base with a custom schema.

The numerous and distinct databases were a cause for concern and
the root of many obstacles for Smashing Magazine.

The first job was to get all this data out of the different databases and
into plain-text files in a simple, folder-based structure.

The goal was to get from a bunch of different databases to a folder
and file-based structure that Hugo would understand and work
with. This looks something like the following:

/content
 /articles
 /2016-01-01-some-old-article-about-css.md
 /2016-01-02-another-old-article-about-animation.md
 ...
 /printed-books
 /design-systems.md
 /digital-adaption.md
 ...
 /ebooks
 /content-strategy.md
 /designing-better-ux.md
 ...
 /jobs
 /2018-04-01-front-end-developer.md
 /2018-05-02-architecture-astronaout.md
 ...
 ...
/data
 /authors
 /matt-biilmann.yml
 /phil-hawksworth.yml
 ...
 /categories
 /css.yml
 /ux.yml

For existing projects with lots of data, this is always a challenging
part of the process, and there’s no one-size-fits-all solution.

There are various tools that allow you to export from Wordpress to
Hugo, Jekyll, and other static site generators, but Wordpress plug-
ins often add their own metadata and database fields, so depending
on the setup, these might not be bulletproof.

Content Migration | 75

Smashing Magazine used a small tool called make-wp-epic that can
serve as a starting point for migrations from Wordpress to the kind
of content structure Hugo prefers. It does a series of queries on the
database and then pipes the results through a series of transforms
that end up being written to files. It gave Smashing the flexibility of
writing custom transforms to reformat the raw HTML from the
Wordpress post-bodies into mostly Markdown with some HTML
blocks. The project required some custom regex-based transforms
for some of the specific shortcodes that were used on the old Word‐
press site. Because Hugo also has good shortcode support, it was just
a matter of reformatting those.

A similar tool was created using the RSS feeds from the Smashing
job board, combined with some scraping of the actual site to export
that content. Something similar was initially tried for the Shopify
content, but the data structures for the shop content ended up
changing so much that the Smashing team preferred simply reenter‐
ing the data.

Utilizing Structured Content
An article would have a structure like this:

title: Why Static Site Generators Are The Next Big Thing
slug: modern-static-website-generators-next-big-thing
image: 'https://cloud.netlifyusercontent.com/assets/344dbf88-
fdf9-42bb-adb4-
46f01eedd629/15bb5653-5a31-4ac0-85fc-c946795f10bd/jekyll-opt.
png'
date: 2015-11-02T23:03:34.000Z
author: mathiasbiilmannchristensen
description: >-
 Influential design-focused companies such as Nest and
 MailChimp now use static website generators for their
 primary websites. Vox Media has built a whole
 publishing system around Middleman...
categories:
 - Coding
 - Tools
 - Static Generators

<p> At StaticGen, our
open-source directory of static website generators
, we've kept track of more than a hundred generators
for more than a year now, and we've seen both the volume and

76 | Chapter 6: Applying the JAMstack at Scale

https://github.com/netlify/make-wp-epic

popularity of these projects take off incredibly on GitHub
during that time, going from just 50 to more than 100
generators and a total of more than 100,000 stars for static
website generator repositories.</p>
...

This plain-text format with a YAML-based frontmatter before the
post body became standard when Tom Preston-Werner launched
Jekyll. It’s simple to write tooling around, and simple to read and
edit by hand with any text editor. It plays well with version control
and is fairly intuitive at a glance (beyond a few idiosyncrasies of
YAML).

Hugo usesthe slug field to decide the permalink on the file, together
with the date, so it’s important that these combine to create the same
URL as the Wordpress version.

Some people intuitively think that something like the content from
Smashing Magazine with thousands of articles and 10 years of his‐
tory would be unwieldy to manage in a Git repository. But in terms
of the pure number of plain-text files, something like the Linux ker‐
nel will make just about any publication seem tiny in comparison.

However, Smashing Magazine also had about a terabyte worth of
images and assets. It was important to keep these out of the Git
repository; otherwise, anyone working with the site would have to
download all of them, and each Git clone operation during the con‐
tinuous deployment cycles would have been painfully slow.

Instead, all the assets were uploaded to a dedicated asset store, a
map of the original asset path to the new Content Delivery Network
(CDN) asset URL was stored, and during the content migration, all
image and asset URLs in the post metadata or the post bodies were
rewritten to the new CDN URL. You’ll notice this for the image
meta field in the previous example post.

This is generally the best approach for anything but lightweight
sites: store content and metadata in Git, but offload assets that are
not part of your “theme” to a dedicated asset store with a CDN inte‐
gration.

Both authors and categories were set up as taxonomies to make sure
Hugo could build out listing pages for both.

Utilizing Structured Content | 77

Working with Large Sites
One problem that emerged after the content had been imported into
the Victor Hugo boilerplate was that building out all the thousands
of production articles made editing templates with automatic
rebuilds during local development feel sluggish.

To work around that, Gulp was used as a way to add a few handy
utilities. First, the full set of articles was added into a production-
articles folder outside of the main content folder. Then, a Gulp task
that could take an extract of 100 articles and move it into the actual
content/articles folder was added.

This way, everybody could work against a smaller subset of articles
when doing local development and enjoy the instant-live reloading
environment that JAMstack setups enable.

For production builds, these two Gulp tasks were used to prepare a
prod/ folder with all the production articles before running the
actual build:

gulp.task('copy-site', (cb) => {
 return gulp.src(['site/**/*', '!site/content/articles/*',
 '!site/production-
articles/*'], { dot: true }).pipe(gulp.dest('prod',
{overwrite: true}));
});
gulp.task('copy-articles', ['copy-site'], (cb) => {
 return gulp.src(['site/production-
articles/*']).pipe(gulp.dest('prod/content/articles',
{overwrite: true}));
});

This meant that working on the site locally didn’t require Hugo to
take thousands of articles into account for each build, and makes the
development experience much smoother.

Building Out the Core
After this raw skeleton was ready, the team set up a pattern library
section that Sara, the project lead we mentioned earlier, could git-
clone the repository and start implementing both core patterns, like
the grid, typography, and animated pull quotes before moving on to
doing page layouts for the home page, article page, category page,
and so on.

78 | Chapter 6: Applying the JAMstack at Scale

One of the things that really set the JAMstack approach apart com‐
pared to projects that Sara had worked on in the past was that the
pattern library setup was the same as the production site setup. This
meant that there was never any handover process. The core develop‐
ment team could simply start using the partials Sara defined to build
out the actual content-driven pages and work within exactly the
same framework.

Going from pattern library partials to a full site mainly involves fig‐
uring out how to get the right data from content into the partials
and how to handle site listings, pagination, and relations while
building out the site. This case study is not meant as a Hugo tutorial,
but many of the techniques for this are similar regardless of the site
generator used, so it will be useful to look at a few template exam‐
ples without focusing too much of the specific idiosyncrasies of the
Hugo template methods or its content model.

An obvious place to begin is looking at some of the common pat‐
terns on the main home page. Just below the fold, you’ll find a list of
the seven latest articles. Every good static site generator will have
ways to output filtered and sorted lists of content. In the case of
Hugo, the partial looks something like this:

<div class="article--grid__container">
 {{ first 7 (where .Data.Pages.ByDate.Reverse "Section"
 "articles")}}
 ...
 {{ partial "article--grid" . }}
 ...
 {{ end }}
</div>

Hugo has a composable query language that lets us filter a sorted list
of all pages, select just the ones from the articles section, and then
pick the first seven.

Before this list of latest articles, there’s a slightly more complex situa‐
tion, given the top part of Smashing Magazine consists of four large
hand-curated articles picked by Smashing’s editorial staff.

Building Out the Core | 79

To handle these curated sections, the team created a JSON data file
called curated.json with a structure as follows:

featured_articles:
- articles/2018-02-05-media-queries-in-2018.md
- articles/2018-01-17-understanding-using-rest-api.md
- articles/2018-01-31-comprehensive-guide-product-design.md
- articles/2018-02-08-freebie-hand-drawn-space-icons.md

The editorial staff manages this list of curated articles, and in the
home-page template uses this pattern to show the highlighted
articles:

{{ range $index, $featured :=
 .Site.Data.curated.featured_articles }}
 {{ range where $.Data.Pages "Section" "articles"}}{{ if eq
 $featured .Path }}{{
partial "featured-article" . }}{{ end }}{{ end }}
{{ end }}

This is the kind of loop-based query that you’ll run into often when
working with static site generators. If Smashing Magazine was a
dynamically generated site where these queries would be done at
runtime, this would be an awful antipattern because looping
through all articles once for every single featured article would put a
strain on the database, slow down site performance, and potentially
cause downtime during peak traffic.

There are places where we also need to watch out for long build
times due to inefficient templates, but an example like this adds only
milliseconds to the total build time of the site, and because the build
is completely decoupled from the CDN delivery of the generated
pages, we never need to worry about runtime costs of these kinds of
queries.

Search
One thing we can’t handle by generating listings up front is site
search, as depicted in Figure 6-1, because this inherently needs to be
done dynamically.

80 | Chapter 6: Applying the JAMstack at Scale

Figure 6-1. Smashing Magazine search

For search, Smashing Magazine relies on a Software as a Service
(SaaS) offering called Algolia that provides lightning-fast real-time
search and integrates from JavaScript in the frontend. There are
other alternatives like Lunr that don’t depend on any external serv‐
ices and instead generate a static index file that can be used on the
client side to search for content. For large sites, however, a dedicated
search engine like Algolia will perform better.

During each production build, a Gulp task runs that pushes all the
content to Algolia’s search index via its API.

This is where our asset pipeline and frontend framework become
important. Because the actual search implementation happens client
side, talking directly to Algolia’s distributed search network from the
browser, it was important to be able to build a clean component-
based implementation of the search UI.

Smashing Magazine ended up using a combination of Preact and
Redux for all the dynamic frontend components. We won’t go in-
depth with the boilerplate code for setting up the store and binding
components to elements on the page, but let’s take a look at how
these kinds of components work.

The actual Algolia search is done within a Redux action. It allows
you to separate the concern of talking to Aloglia’s API and updating
the global state of the app with the current search results from the

Search | 81

concerns of how you present these results and from the UI layer that
triggers a search.

Here’s the relevant action:

import algoliasearch from 'algoliasearch'
export const client = algoliasearch(ENV.algolia.appId, ENV.
algolia.apiKey)
export const index = client.initIndex(ENV.algolia.indexName)
export const search = (query, page = 0) => (dispatch, getState)
 => {
 dispatch({ type: types.SEARCH_START, query })
 index.search(query, { hitsPerPage: (page + 1) * 15, page: 0 },
 (error, results) =>
{
 if (error) return dispatch({
 type: types.SEARCH_FAIL,
 error: formatErrorMessage(error)
 })
 dispatch({ type: types.SEARCH_SUCCESS, results, page })
 })
}

With this in place, you can bind an eventListener to the search
input on the site and dispatch the action for each keystroke with the
query the user has typed:

props.store.dispatch(search(query))

You’ll find placeholder <div>s in the markup of the site, like:

<div data-component="SearchResults" data-lite="true"></div>

The main app.js will look for tags with data-component attributes
and then bind the matching Preact component to those.

In the case of the search results with the data-lite attribute, you
can display a Preact component connected to the Redux store, that
will display the first results from the store and link to the actual
search result page.

This concept of decorating the static HTML with Preact compo‐
nents is used throughout the Smashing project to add dynamic capa‐
bilities.

One small extra detail for the site search is a fallback to doing a
Google site search if JavaScript is disabled, by setting an action on
the form that wraps the search input field:

<form data-handler="Search" method="get"
action="https://www.google.com/webhp?q=site:smashingmagazine.

82 | Chapter 6: Applying the JAMstack at Scale

com">
 <label for="js-search-input"></label>
 <div class="search-input-wrapper">
 <input type="search" name="q" id="js-search-input"
 autocomplete="off"
placeholder="Search Smashing..." aria-label="Search Smashing"
aria-controls="js-
search-results-dropdown" />
 </div>
</form>

In general, it’s advisable to always have fallbacks where possible
when JavaScript is not available, while recognizing that for modern
web projects JavaScript is the main runtime, and most dynamic
interactions won’t work with the runtime disabled.

Content Management
There are a number of different approaches to content management
on the JAMstack, but most involve a headless CMS. Traditionally, a
CMS like Wordpress is both the tool used by admins to manage
content and the tool used for building out the HTML pages from
that content. A headless CMS separates those two concerns by
focusing on only the content management, and delegating the task
of using that content to build out a presentation layer to an entirely
separate toolset.

You can find a listing of headless CMS offerings at https://head
lesscms.org/. They’re divided into two main groups:

API-based CMSs
These are systems in which the content is stored in a database
and made available through a web API. Content editors get a
visual UI for authoring and managing content, and developers
typically get a visual UI for defining content types and relations.

Contentful, Dato CMS, and GraphCMS are leaders in the space.

Git-based CMSs
These are tools that typically integrate with a Git provider’s
(GitHub, GitLab, Bitbucket) API layer, or work on a filesystem
that can be synchronized with Git, to edit structured content
stored directly in your Git repository.

Content Management | 83

https://headlesscms.org/
https://headlesscms.org/

Netlify CMS is the largest open source, Git-based CMS, while
Cloudcannon and Forestry are the most popular proprietary
CMS solutions based on this approach.

Both approaches have advantages.

API-based CMSs can be powerful when you’re consuming the con‐
tent from many sources (mobile apps, different landing pages, Kiosk
software, etc.), and they can be better geared to handle highly rela‐
tional content for which constraints on relations need to be enforced
by the CMS. The trade-off is that to use them from a static build
process, we’ll always need a synchronization step to fetch all of the
content from the remote API before running the build, which tends
to increase the total build time.

Git-based CMSs integrate deeper into the Git-centric workflow and
bring full version control to all your content. There are inherent
advantages to having all content stored in a Git repository as struc‐
tured data. As developers, we can use all the tools we normally use
to work on text files (scripts, editors, grep, etc.), while the CMS layer
gives content editors a web-based, content-focused UI for authoring
or management.

Smashing Magazine chose to build the content-editing experience on
the open source Netlify CMS to get the deepest integration into Git,
the best local developer experience, and the fastest build times. For
an authoring team as technical as Smashing Magazine, the option of
sidestepping the CMS and working directly in a code editor to tweak
code examples or embedded HTML is a huge advantage over any
traditional, database-driven CMS.

Integrating Netlify CMS
When going from a working design or a pattern library to a CMS-
backed site, the traditional approach was to integrate into a CMS
(i.e., building out a Wordpress theme or the like). Netlify CMS
reverses that process and instead allows you to pull the CMS into a
site and configure it to work with the existing content structure.

The most basic integration of Netlify CMS consists of adding two
files to a site: an /admin/index.html file that loads the CMS SPA and
a /admin/config.yml configuration file where the content structure is
described so that the CMS can edit it.

84 | Chapter 6: Applying the JAMstack at Scale

The base abstraction of Netlify CMS is a “collection,” which can be
either a folder with entries all having the same content structure, or
a set of different files for which each entry has its own content struc‐
ture (often useful for configuration files and data files).

Here’s the part of the CMS configuration that describes the full setup
for the main articles collection:

collections:
 - name: articles
 label: "Smashing Articles"
 folder: "site/production-articles"
 sort: "date:desc"
 create: true # Allow users to create new documents in this
 collection
 slug: "{{slug}}"
 fields: # The fields each document in this collection have
 - {label: "Title", name: "title", widget: "string"}
 - {label: "Slug", name: "slug", widget: "string",
 required: false}
 - {label: "Author", name: "author", widget: "relation",
 collection: "authors",
searchFields: ["first_name", "last_name"], valueField:
"title"}
 - {label: "Image", name: "image", widget: "image"}
 - {label: "Publish Date", name: "date", widget:
 "datetime", format: "YYYY-MM-DD hh:mm:ss"}
 - {label: "Quick Summary", name: "summary", widget:
 "markdown", required: false}
 - {label: "Excerpt", name: "description", widget:
 "markdown"}
 - {label: "Store as Draft", name: "draft", widget:
 "boolean",required: false}
 - {label: "Disable Ads", name: "disable_ads", widget:
 "boolean", required: false}
 - {label: "Disable Panels", name: "disable_panels",
 widget: "boolean", required: false}
 - {label: "Disable Comments", name: "disable_comments",
 widget: "boolean", required: false}
 - {label: "Body", name: "body", widget: "markdown"}
 - {label: "Categories", name: "categories", widget:
 "list"}

The structure of the entries is described by a list of fields, where
each field has a widget that defines how the value should be entered.

Netlify CMS comes with a set of standard widgets for strings, mark
down fields, relations, and so on.

Integrating Netlify CMS | 85

Based on this configuration, the CMS will present a familiar CMS
interface (see Figure 6-2) for editing any article stored in the site/
production-articles folder in the repository with a visual editor.

Figure 6-2. Netlify CMS

Netlify CMS presents a live preview of the content being edited, but
out of the box it was using a generic stylesheet that was not specific
to the site.

Because Netlify CMS is a React SPA and very extensible, the best
approach for the live preview is to provide custom React compo‐
nents for each collection and pull in the actual stylesheets from the
site.

Smashing did this by setting up a cms.js entry that the Webpack part
of the build would process, and then using that as the base for build‐
ing out preview templates and custom widgets (a bit more on those
when we dive into ecommerce later), and editor plug-ins to better
support some of the short codes that content editors would other‐
wise need to know.

That looks roughly like the following:

import React from 'react';
import CMS from "netlify-cms";
import ArticlePreview from './cms-preview-templates/Article';
import AuthorPreview from './cms-preview-templates/Author';
// ... more preview imports
import {PriceControl} from './cms-widgets/price';
import {SignaturePlugin, PullQuotePlugin, FigurePlugin} from

86 | Chapter 6: Applying the JAMstack at Scale

'./cms-editor-
plugins/plugins';
window.CMS.registerPreviewStyle('/css/main.css');
window.CMS.registerPreviewStyle('/css/cms-preview.css');
window.CMS.registerPreviewTemplate('articles', ArticlePreview);
window.CMS.registerPreviewTemplate('authors', AuthorPreview);
// ... more preview registrations
window.CMS.registerWidget('price', PriceControl);
window.CMS.registerEditorComponent(FigurePlugin);
window.CMS.registerEditorComponent(PullQuotePlugin);
window.CMS.registerEditorComponent(SignaturePlugin);

This imports the core CMS module, which initializes the CMS
instance and loads the configuration and then registers preview
styles (the CSS to be included in the preview pane), preview tem‐
plates (to customize previews for the different collections or data
files), preview widgets (to provide custom input widgets for this
project), and editor components (to add custom buttons to the rich-
text editor).

The preview components are pure presentational react components
that mimic the markup used for the real articles, authors, books, and
so on.

A simplified version of the article component looks like this:

import React from 'react';
import format from 'date-fns/format';
import AuthorBio from './author-bio';
export default class ArticlePreview extends React.Component {
 render() {
 const {entry, fieldsMetaData, widgetFor, getAsset} = this.
 props;
 const data = entry && entry.get('data').toJS();
 const author = fieldsMetaData.getIn(['authors', data.
 author]);
 return <article className="block article" role="main">
 <div className="container">
 <div className="row">
 <div className="col col-12 col--article-head">
 {author && <AuthorBio author={author.toJS()}
 getAsset={getAsset}/>}
 <header className="article__header">
 <div className="article__meta">
 <time className="article__date">
 {
 format(data.date, 'MMMM')
}
 { format(data.date, 'D, YYYY') }
 </time>

Integrating Netlify CMS | 87

 <svg aria-hidden ="true" style={{margin: '0
 0.75em'}} viewBox="0 0 7
7" width="7px" height="7px">
 <title>bullet</title>
 <rect fill="#ddd" width="7" height="7" rx="2"
 ry="2"/>
 </svg>

 0
 Comments

 </div>
 <h2>{ data.title }</h2>
 <div className="article__tags">
 {data.categories && data.categories.map
 ((category) => (

 { category }
 ¹

))}
 </div>
 </header>
 </div>
 <div className="col col-4 col--article-summary">
 <p className="article__summary">
 { data.description }
 </p>
 </div>
 <div className="col col-7 article__content">
 { widgetFor('body') }
 </div>
 </div>
 </div>
 </article>;
 }
}

Listings, Search, and Assets: Customizing the
CMS for Large Projects
Out of the box, Netlify uses GitHub’s content API to access all the
content, and generate listings and filtering for search queries. The
standard setup also assumes that all media assets are stored in the
Git repository.

For really large sites like Smashing Magazine, this approach begins
breaking down. Smashing Magazine has more than a terabyte of

88 | Chapter 6: Applying the JAMstack at Scale

assets in the form of uploaded images, media files, PDFs, and others
that’s much more than it would ever want to store in its Git reposi‐
tory. Apart from that, GitHub’s API begins breaking down for con‐
tent listings when there’s more than 2,000 files in a folder—
obviously the case for Smashing Magazine’s article collection.

Search is not just an issue within the CMS, but also for the actual
website, and this will typically be the case for any larger content-
driven site. So why not use the same search functionality in both
places?

We shared earlier how Algolia was used to add site search function‐
ality to Smashing Magazine’s core site. Netlify CMS allows integra‐
tions to take over functionality like asset management, collection
search, or collection listings. It also comes with a plug-in for using
Algolia for all search and listings instead of building this on top of
the Git repository folder listings. This makes listing snappy even for
very large collections.

In a similar way, the media library functionality of Netlify CMS
allows for integrations, and Smashing Magazine uses this to store
assets in an external asset store where they are directly published to
a CDN when uploaded. That way only references to the asset URLs
are stored in the Git repository.

This extensible architecture allows Netlify CMS to scale to large pro‐
duction sites while sticking to the core principle of bringing content
editors into the same Git-based workflow we take for granted as
developers.

Every architectural decision we make as developers has some trade-
offs. When we work with a Git-based architecture, we might need to
supplement our toolchain with asset stores, external search engines,
and the like, but few developers would voluntarily agree to the
trade-offs that come with storing all their code in an SQL database.
So, why do it for your content when that’s inherently the most
important, core part of any website?

Identity, Users, and Roles
When working with traditional monolithic applications, we typically
have a built-in concept of a user that’s backed by a database collec‐
tion and integrated throughout the monolithic application. This was
one of the challenges of Smashing Magazine’s previous architecture:

Identity, Users, and Roles | 89

each of the monolithic applications it relied on (Wordpress, Shopify,
Kirby, Rails) had its own competing concept of a user.

But as the magazine moved from monoliths to composing individ‐
ual microservices for all dynamic functionality, how could it avoid
making this problem even worse?

JWTs and Stateless Authentication
An important part of the answer to this is the concept of stateless
authentication. Traditionally, authentication was stateful in the sense
that when doing a page request to a server-rendered app, we would
set a cookie with a session ID and then the application would check
that against the current state in the database and decide the role, dis‐
play name, and so on of the user based on this lookup.

Stateless authentication takes a different approach. Instead of pass‐
ing a session ID when we call a microservice, it passes a representa‐
tion of the user. This could look something like the following:

{
 "sub": "1234",
 "email": "matt@netlify.com",
 "user_metadata": {
 "name": "Matt Biilmann"
 },
 "app_metadata": {
 "roles": ["admin", "cms"],
 "subscription": {
 "id": "4321",
 "plan": "smashing"
 }
 }
}

Now each microservice can look at this payload and act accordingly.
If an action requires an admin role, the service can check whether
app_metadata.roles in the user payload includes an admin role. If
the service needs to send an order confirmation to the user, it can
rely on the email property.

This means that each microservice can look for the payload infor‐
mation it needs without having any concept of a central database
with user information and without caring about which system was
used to authenticate the user.

90 | Chapter 6: Applying the JAMstack at Scale

However, we need a way to establish trust and ensure that the pay‐
load of the user really represents a real user in the system.

JSON Web Token (JWT) is a standard for passing along this kind of
user payload while making it possible to verify that the payload is
legitimate.

A JWT is simply a string of the form header.payload.signature
with each part of bas64 encoded to make it safe to pass around in
HTTP headers or URL query parameters. The header and payload
are JSON objects, and the signature is a cryptographic signature of
the header and the payload.

The header specifies the algorithm used to sign the token (but the
individual microservices should be strict about what algorithms they
accept—the most common is HS256). Each token will be signed
with either a secret or with a private key (depending on the algo‐
rithm used). This means that any microservice that knows the secret
(or has a corresponding public key) can verify that the token is legit‐
imate and trust the payload.

Normally, a JWT will always have an exp property that sets the expi‐
ration time for the token. A short expiration time ensures that if a
token is leaked in some way, there’s at most a short time window to
exploit it and it can’t simply be used to take over the role of a user.
For that reason, JWTs are typically paired with a refresh token that
can be used to retrieve a new JWT from the authentication service as
long as the user is still logged in.

The Auth0 team that pioneered this standard maintains a useful
resource where you can find more in-depth information and debug‐
ging tools for inspecting and verifying tokens.

API gateways and token signatures
With a naive approach to stateless authentication, every microser‐
vice in the Smashing Magazine system would need to know the same
secret in order to verify the user payload. This increases the risk of
leaking the secret and means that every service would be capable of
issuing its own valid JWTs instead of limiting the capability to just
the main identity service.

One approach to get around this is to use a signing algorithm that
relies on private/public cryptographic keypairs. Then, all the serv‐
ices will need to look up a public key and use it to verify that the

Identity, Users, and Roles | 91

https://jwt.io/
https://jwt.io/

signature was generated with a private part of the key pair. This is
efficient but can introduce quite a bit of complexity around having
to fetch and cache public keys and gracefully handle public key rota‐
tions.

Another approach is to have an API gateway between the client and
the different microservices. This way, only the gateway needs to
share the secret with the identity service and can then re-sign the
JWT with a secret specific to each individual microservice. It allows
the system to rotate secrets independently for different services
without running the risk of sharing secrets across multiple services
(where some might even be owned by third parties).

GoTrue and Netlify identity
Smashing Magazine uses an open source microservice, GoTrue, to
handle user sign-up and logins. It’s a microservice written in Go
with a small footprint.

The main endpoints for the microservice are:

• POST /signup: Sign up a new user
• POST /verify: Verify the email of a user after sign-up
• POST /token: Issue a short lived JWT + a refresh token for a

user
• POST /logout: Revoke the refresh token of the user

All of these end points are consumed client side, and the login and
sign-up forms for Smashing Magazine are again built as client-side
Preact components.

When a user signs up for Smashing Magazine, the Preact component
triggers a Redux action that uses the gotrue-js client library like
this:

return auth.signup(data.email, data.password, {
 firstname: data.firstname,
 lastname: data.lastname
}).then(user => {
 return auth.login(data.email, data.password, true).then(user
 => {
 persistUserSession(user, noRedirect);
 return user;
 })
})

92 | Chapter 6: Applying the JAMstack at Scale

User sessions are saved in localStorage, so the UI can access the
user payload and use it to show the user’s name where it makes
sense or pass on the JWT to other microservices where it makes
sense.

We see later how the identity of a user can be represented as a JWT
and used in tandem with the other services that back the dynamic
functionality of Smashing Magazine.

The idea of stateless authentication is one of the fundamental archi‐
tectural principles that makes modern microservice-based architec‐
ture viable—and it’s something core to the emergence of an
ecosystem of microservices that can be combined and plugged
together without any foreknowledge of one another, much in the
same way that the Unix philosophy lets us use pipes to combine lots
of small independent command-line tools.

Where the large monolithic apps each came with their own ecosys‐
tem inside (Wordpress plug-ins, RubyGems for Rails, etc.), we’re
now seeing a new ecosystem emerge at the level of ready-made
microservices, both open source and fully managed, that frontend
developers can use to build large applications without any backend
support.

Ecommerce
Smashing Magazine derives a large part of its income from its ecom‐
merce store that sells printed books, ebooks, job postings, event tick‐
ets, and workshops.

Before the redesign, Smashing Magazine used Shopify, a large, multi‐
tenant platform that implements its own CMS, routing layer, tem‐
plate engine, content model, taxonomy implementation, checkout
flow, user model, and asset pipeline.

As part of the redesign, Smashing Magazine implemented a small,
open source microservice called GoCommerce. It weighs in at about
9,000 lines of code, including comments and whitespace.

GoCommerce doesn’t implement a product catalog and it has no
user database, routing logic, or template engine. Instead, its essence
is two API calls:

• POST /orders

Ecommerce | 93

Create a new order, with a list of line items, example:
{"line_items": ["/printed-books/design-systems/"]

GoCommerce fetches each path on the site and extracts meta‐
data with pricing data, product type (for tax calculations), title,
and so on and constructs an order in its database. The website
itself is the canonical product catalog.

• POST /orders/:order_id/payments
Pay for an order with a payment token coming from either
Stripe or Paypal.

GoCommerce will validate that the amount matches the calculated
price based on the product metadata and tax calculations (as well as
any member discounts, coupons, etc.).

The product catalog is built out by Hugo during the build step, and
all products are managed with Netlify CMS. A simplified version of
an ebook file stored in the Git repository looks like this:

title: 'A Career On The Web: On The Road To Success'
sku: a-career-on-the-web-on-the-road-to-success
image: >-
 //cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-
46f01eedd629/133e54ba-e7b5-40ff-957a-f42a84cf79ff/on-the-road-
to-success-365-
large.png
description: >-
 There comes a time in everyone's career when changing jobs is
 the natural next step. But how can you make the most of this
 situation and find a job you'll love?
price:
 eur: '4.99'
 usd: '4.99'
published_at: March 2015
isbn: 978-3-945749-17-3
files:
 pdf: >-
 //api.netlify.com/api/v1/sites/344dbf88-fdf9-42bb-adb4-
46f01eedd629/assets/58eddda0351deb3f6122b93c/public_signature

<p>There comes a time in everyone's career when changing jobs
is the natural next step. Perhaps you're looking for a new
challenge or you feel like you've hit a wall in your current
company? Either way, you're standing at a crossroad, with an
overwhelming amount of possibilities in front of you. But how

94 | Chapter 6: Applying the JAMstack at Scale

can you make the most of this situation? How can you
find a job you will truly love?</p>

When Hugo builds out the detail page for an ebook, it outputs a
<script> tag with metadata used for GoCommerce that looks like
this:

<script class="gocommerce-product" type="application/json">
{
 "sku": "a-career-on-the-web-assuming-leadership",
 "title": "A Career On The Web: Assuming Leadership",
 "image": "//cloud.netlifyusercontent.com/assets/344dbf88-fdf9-
 42bb-adb4-
46f01eedd629/3eb5e393-937e-46ac-968d-249d37aebcef/assuming-
leadership-365-
large.png",
 "type": "E-Book",
 "prices": [
 {"amount": "4.99", "currency": "USD"},
 {"amount": "4.99", "currency": "EUR"}
],
 "downloads": [{"format":"pdf","url":"//api.netlify.com/api
 /v1/sites/344dbf88-fdf9-
42bb-adb4-46f01eedd629/assets/58edd9f7351deb3f6122b911/public_
signature"}]
}
</script>

This is the canonical product definition that will be used both when
adding the product to the cart client side and when calculating the
order price in GoCommerce.

GoCommerce comes with a small JavaScript library that helps with
managing a shopping cart, does the same pricing calculations client-
side as GoCommerce will do server side when creating an order, and
handles the API calls to GoCommerce for creating orders and pay‐
ments and querying order history.

When a user clicks a “Get the e-book” button, a Redux action is dis‐
patched:

gocommerce.addToCart(item).then(cart => {
 dispatch({
 type: types.ADD_TO_CART_SUCCESS,
 cart,
 item
 })
})

Ecommerce | 95

The item we add to the card has a path, and the GoCommerce
library will fetch that path on the site with an Ajax request and look
for the <gocommerce-product> script tag and then extract the meta‐
data for the product, run the pricing calculations, and store the
updated shopping cart in localStorage.

Again, we have a Preact component connected to the Redux store
that will display the shopping cart in the lower-left corner of the
page if there are any items in the store.

The entire checkout process is implemented completely client side
in Preact. This proved tremendously powerful for the Smashing
team because it could customize the checkout flows in so many dif‐
ferent ways. Tweak the flow for a ticket to include capturing
attendee details, tweak the flow for a job posting to include captur‐
ing the job description and settings, and tweak the flow for products
requiring shipping versus purely digital products like ebooks.

There’s an open source widget available at https://github.com/netlify/
netlify-gocommerce-widget that has an example of this kind of check‐
out flow implemented in Preact + MobX, and you can even use it as
a plug-and-play solution for a GoCommerce site.

During the checkout flow, Preact forms capture the user’s email, bill‐
ing, and shipping address, and the user can either select PayPal or
credit card as a payment option. In either case their respective Java‐
Script SDKs are used client side to get a payment token for the
order. The last part of the checkout flow is a confirmation screen
with the order details. When the user selects “Confirm,” the follow‐
ing Redux action takes care of the actual sale:

export const putOrder = (dispatch, getState) => {
 const state = getState()
 const { order, cart, auth } = state
 dispatch({ type: types.ORDER_CONFIRM_START })
 // Create a new order in Gocommerce
 gocommerce.order({
 email: order.details.email,
 shipping_address: formatAddress(order.details.
 shippingAddress),
 billing_address: formatAddress(order.details.billingAddress)
 }).then(result => {
 // Create a payment for the order with the stripe token or
 paypal payment
 return gocommerce.payment({
 order_id: result.order.id,
 amount: result.cart.total.cents,

96 | Chapter 6: Applying the JAMstack at Scale

https://github.com/netlify/netlify-gocommerce-widget
https://github.com/netlify/netlify-gocommerce-widget

 provider: order.paypal ? 'paypal' : 'stripe',
 stripe_token: order.key,
 paypal_payment_id: order.paypal && order.paypal.
 paymentID,
 paypal_user_id: order.paypal && order.paypal.payerID
 }).then(transaction => {
 // All done, clear the cart and confirm the order
 if (auth.user) dispatch(saveUserMetadata(order.details))
 dispatch(emptyCart)
 dispatch(clearOrder)
 dispatch({
 type: types.ORDER_CONFIRM_SUCCESS,
 transaction: Object.assign({}, transaction, { order:
 result.order }),
 cart
 })
 })
 }).catch(error => dispatch({
 type: types.ORDER_CONFIRM_FAIL,
 error: formatErrorMessage(error)
 }))
}

There’s a bit to digest there, but the core of it comes down to first
calling gocommerce.order with the email and shipping or billing
addresses of the user, and then the GoCommerce library adds the
items from the cart to the order.

As long as that goes well, we then call gocommerce.payment for the
order with the amount we’ve shown to the user client side and a pay‐
ment method and token.

GoCommerce looks up the actual line items from the order; does all
the relevant pricing calculations, taking into account taxes, dis‐
counts, and coupons; and verifies that the amount we’ve shown cli‐
ent side matches the calculated order total. If all is well,
GoCommerce triggers a charge with the relevant payment method.
If that works, it sends out a confirmation email to the user and an
order notification to the shop administrator.

Ecommerce | 97

Identity and Orders
GoCommerce has no user database and no knowledge about the
identity service in use. At the same time, the setup needs to ensure
that logged-in users are able to access their order history and previ‐
ous shipping or billing addresses.

Stateless authentication to the rescue: you can configure GoCom‐
merce with a JWT secret, and then any API request signed with a
JWT that can be verified with that secret will be associated with a
user, based on the sub attribute of the JWT payload. Note that the
attribute is part of the JWT standard and indicates the unique ID of
the user identified by the token.

Client side this is handled in the JS library by using gocom
merce.setUser(user) with a user object that responds to the
user.jwt() method that returns a token wrapped in a promise. The
promise part is important because the user object might need to
exchange a refresh token to a valid JWT in the process.

After the user is set, the GoCommerce library signs all API requests
with a JWT.

Calling the GET /orders endpoint with a JWT returns a listing of all
the orders belonging to the user identified by the token. Using that
endpoint and the identity service, Smashing Magazine could build
out the entire order history panel client side with Preact compo‐
nents.

Membership and Subscriptions
The introduction of a membership feature was one of the biggest
motivations for Smashing Magazine’s decision to relaunch its site
and build a new architectural platform from the ground up. It
wanted to offer readers a three-tiered subscription plan.

So far, we’ve seen that the magazine tackled identity and ecommerce
with open source microservices. The implementation of subscrip‐
tions introduces a new pattern that’s becoming an increasingly pop‐
ular component of JAMstack projects: using serverless functions to
glue together existing services and introduce new functionality.

Serverless is often a contested term. Obviously, servers are still
involved somewhere, but the option to simply write some glue code

98 | Chapter 6: Applying the JAMstack at Scale

without having to worry about where and how that code is executed
can be an incredibly powerful part of our toolbox.

At this phase of the migration, Smashing Magazine had all of the
pieces that needed to be stitched together in place: GoTrue for iden‐
tifying users, Stripe for accepting payments and handling recurring
billing, MailChimp to handle email lists with groups for member
and plan-specific emails, and Netlify’s CDN-based rewrite rules to
selectively show different content to users with different roles.

To build a fully-fledged subscription service, all it needed was a bit
of glue code to tie all of these together. AWS Lambda functions
proved to be a great way to run this code without having to worry
about running a server-side application somewhere.

To become a member, a user needs to fill out the sign-up form
shown in Figure 6-3.

Let’s go through what happens when this Preact component-based
form is filled out and the user clicks the action button.

Assuming that all of the data entered passes the basic client-side val‐
idations, a new user is created in GoTrue via the sign-up endpoint
and the script gets hold of a JWT representing the new user.

Membership and Subscriptions | 99

Figure 6-3. Smashing Magazine sign-up form

Then, Stripe’s “Checkout” library is used to exchange the credit card
details for a Stripe token.

After these two preconditions are both successful, a Redux action is
triggered, calling a Lambda function deployed via Netlify and trig‐
gered by an HTTP request:

fetch('/.netlify/functions/membership', {
 headers: {Authorization: `Bearer ${token}`},

100 | Chapter 6: Applying the JAMstack at Scale

 method: 'POST',
 body: JSON.stringify({ plan, stripe_token: key })
})

The Lambda function handler then triggers a method called sub
scribeToPlan that looks like this:

function subscribeToPlan(params, token, identity) {
 // Fetch the user identified by the JWT from the identity
 service
 return fetchUser(token, identity).then(user => {
 console.log("Subcribing to plan for user: ", user);

 // Check if the user is already linked to a Stripe Customer
 // if not, create a new customer in Stripe
 const customer_id = user.app_metadata.customer
 ? user.app_metadata.customer.id
 : createCustomer(user);
 return Promise.resolve(customer_id)
 .then(customer_id => {
 // Check if the user has an existing subscription
 if (user.app_metadata.subscription) {
 // Update the existing Stripe subscription
 return updateSubscription(
 customer_id,
 user.app_metadata.subscription.id,
 params
).then(subscription => {
 // Add the user to the MailChimp list and the right
 Group
 addToList(user, params.plan);
 // Notifiy about the change of plan in Slack
 sendToSlack(
 'The user ' + user.email + ' changed from ' +
 user.app_metadata.subscription.plan + ' to ' +
 params.plan
);
 return subscription;
 });
 }

 // No existing subscription, create a new subscription
 in Stripe
 return createSubscription(customer_id, params).then(
 subscription => {
 // Add the user to the MailChimp list and the right
 Group
 addToList(user, params.plan);
 // Notify about the new subscriber in Slack
 sendToSlack('Smashing! The user ' + user.email + '
 signed up for a ' +

Membership and Subscriptions | 101

params.plan + ' plan');
 return subscription;
 });
 })
 // In the end, update the user in the identity service.
 // This will update app_metdata.customer and app_
 metadata.subscription
 // for the user
 .then(subscription => updateUser(user, subscription,
 identity));
 });
}

There are a few things happening here. For each of the external
services, like Stripe, MailChimp, and Slack, the Lambda function has
access to the relevant API keys and secrets via environment vari‐
ables. When working with different external APIs, this is one of the
key things that we can’t do in client-side JavaScript, because no vari‐
able exposed there can be kept secret.

In this case, the behavior of the identity service is a little different.
When a Lambda function is deployed via Netlify on a project that
has an identity service, the function will have privileged access to the
identity service. This is a common pattern, and you can similarly set
up Lambda function using Amazon CloudFront and Amazon API
Gateway together with AWS’s identity service (Cognito) to have
privileged access.

Note how the user metadata is fetched from the identity server
instead of relying on the data from the JWT. Because JWTs are state‐
less and have a lifetime, there are cases for which the information
could be slightly out of date, so it’s important to check against the
current state of the user.

The effect of the Lambda function is to use the Stripe token to create
a recurring subscription in Stripe and add the Stripe customer and
subscription ID to the app_metedata attribute of the user. It also
subscribes the email of the user to a MailChimp list and triggers a
notification in an internal Slack channel about the new subscriber.

After a subscriber has an app_metadata.plan attribute, Smashing
Magazine takes advantage of Netlify’s JWT-based rewrite rules to
show different versions of the membership pages depending on
which user is logged in. The same could be achieved with other
CDNs that allow edge logic around JWT, edge Lambda functions, or
similar edge functions.

102 | Chapter 6: Applying the JAMstack at Scale

This highlights how something like a full membership engine was
built with almost no custom server-side code (the full membership.js
file is 329 lines long), and with a serverless stack where the develop‐
ers on the project never had to worry about operational concerns
around their code.

Tying It Together: Member Discounts in
GoCommerce
A selling point of memberships is discounts on books, ebooks, and
conference tickets. But how do we approach this in the JAMstack
world of small, independent microservices?

Although GoCommerce has no knowledge of the existence of the
GoTrue-based identity service, it understands the concept of JWTs
and can relate an order to a user ID by looking at the sub property
of the token payload.

In the same way, GoCommerce can apply discounts to orders if a
predefined discount matches the token payload. But where do we
define the discounts?

Again, GoCommerce uses the technique of making the website the
single source of truth. Just like GoCommerce uses the website as the
authoritative product database by looking up product metadata on a
path, it also loads a /gocommerce/settings.json file from the website
and refreshes this regularly.

The settings.json holds all the tax settings that both GoCommerce
and the gocommerce-js client library use for pricing calculation. It
can also include a member_discounts setting looking something like
this:

"member_discounts": [
 {
 "claims": {"app_metadata.subscription.plan": "member"},
 "fixed": [
 {"amount": "10.00", "currency": "USD"},
 {"amount": "10.00", "currency": "EUR"}
],
 "product_types": ["Book"]
 }
]

This tells GoCommerce that any logged-in user who has a JWT pay‐
load looking something like what follows should get a discount on

Tying It Together: Member Discounts in GoCommerce | 103

any line item with the type “Book” (determined from the product
metadata on the product page) of either $10 or 10€ depending on
the currency of the order:

{
 "email": "joe@example.com",
 "sub": "1234",
 "app_metadata": {"subscription": {"plan": "member"}}
}

Note again how there’s no coupling at all between GoCommerce and
the identity service or the format in which membership information
is represented in the JWT payload. Any pattern in the claim can be
used to define a user with a status that should give special discounts.
GoCommerce also doesn’t care how the settings.json is managed. We
could easily set up Netlify CMS to give a visual UI for managing
this, generate it from data stored in an external API, fetch the data
from a Google Sheet, and generate the JSON or have developers edit
it by hand. All these concerns are kept completely separate.

Job Board and Event Tickets: AWS Lambda and
Event-Based Webhooks
In the previous section, we saw how GoCommerce could act on a
user’s membership plan and calculate discounts, without any cou‐
pling between the membership implementation, the identity service,
and GoCommerce.

The implementation of Smashing Magazine’s job board highlights a
similar concern. In this case, some action needs to happen when
someone buys a product with the type “Job Posting,” but because
GoCommerce is a generic ecommerce microservice, it has no
knowledge of what a “Job Posting” is or how to update a job board.

However, GoCommerce has a webhook system that allows it to trig‐
ger HTTP POST requests to a URL endpoint when an order has
been created. Webhook requests are signed with a JWT-based signa‐
ture, allowing the service receiving the request to verify that it’s gen‐
erated from an actual GoCommerce order and not by someone
triggering the hook directly.

This again offers us the ability to glue loosely coupled components
together by using serverless functions.

104 | Chapter 6: Applying the JAMstack at Scale

Smashing Magazine approached its job board as any other listing/
detail part of its site, built from a collection of markdown files with
frontmatter by Hugo.

Instead of somehow integrating job board functionality into
GoCommerce, the team deployed an AWS Lambda function that
serves as the webhook endpoint for GoCommerce payments. This
means that each time an order has been completed and paid for,
GoCommerce triggers the Lambda function with a signed request. If
the “type” of the product in the event payload is a “Job Posting,” a
processJob method is triggered:

function processJob(payload, job) {
 console.log("Processing job", job.meta);
 const content = `---\n${yaml.safeDump({
 title: job.meta.title || null,
 order_id: payload.order_id || null,
 date: payload.created_at || null,
 logo: job.meta.logo || null,
 commitment: job.meta.commitment || null,
 company_name: job.meta.company_name || null,
 company_url: job.meta.company_url || null,
 jobtype: job.meta.jobtype || null,
 location: job.meta.location || null,
 remote: job.meta.remote || null,
 application_url: job.meta.application_url || null,
 featured: job.meta.featured || false
 })}\n---\n\n${job.meta.description || ""}`;
 const path = `site/content/jobs/${format(
 payload.created_at,
 "YYYY-MM-DD"
)}-${payload.id}-${urlize(job.title)}.md`;
 const branch = "master";
 const message = `Create Job Post
This is an automatic commit creating the Job Post:
"${job.meta.title}"`;
 return fetch(
 `https://api.github.com/repos/smashingmagazine/smashing-
magazine/contents/${path}`,
 {
 method: "PUT",
 headers: { Authorization: `Bearer ${process.env.
 GITHUB_TOKEN}`
 },
 body: JSON.stringify({
 message,
 branch,
 content: new Buffer(content).toString("base64")
 })

Job Board and Event Tickets: AWS Lambda and Event-Based Webhooks | 105

 }
);
}

This extracts the metadata related to the job posting from the order
object, formats it into markdown with YAML frontmatter, and then
uses GitHub’s content API to push the new job posting to the main
Smashing Magazine repository.

This in turn triggers a new build, where Hugo will build out the
updated version of the job board and Netlify will publish the new
version.

In a similar way, orders for event tickets trigger a function that adds
the attendee information to a Google Sheet for the event that the
Smashing team uses to print badges and verify attendees at the event
check-in. All of this happens without any need for GoCommerce to
have any concept of a ticket or an event besides the product defini‐
tion in the metadata on each event page.

Workflows and API Gateways
This case study has shown a consistent pattern of a core, prebuilt
frontend, using loosely coupled microservices, glued together with
serverless functions either as mini-REST endpoints or as event-
triggered hooks.

This is a powerful approach and a big part of the allure of the JAM‐
stack. Using a CDN-deployed static frontend that talks to dynamic
microservices and uses serverless functions as a glue layer, small
frontend teams can take on large projects with little or no operations
and backend support.

Pulling this off does require a high level of maturity in automation,
API routing, secrets management, and orchestration of your server‐
less code, with a viable workflow and a solid, maintainable stack.

Making the CMS integration work, indexing to an external search
engine viable, and powering the Git-based job board required a
tightly integrated continuous deployment pipeline for the Gulp-
based build and ample support for staging environments and pull
request previews.

The integrated, lightweight API gateway layer was necessary to man‐
age routing to the different microservices and ensure one set of

106 | Chapter 6: Applying the JAMstack at Scale

services was used from pull request or staging deploys while the
production instances were used from master branch deploys.

In this case, Netlify’s gateway layer also handled key verification at
the edge, so each microservice could have its own JWT secret and
only the CDN had the main identity secret. This allows the CDN to
verify any JWT from the identity service in a call to a service and
swap it with a JWT with the same payload that is signed with the
secret specific to the individual service.

It also proved key to having an integrated workflow for deploying
the serverless functions together with the frontend and automating
the routing and invocation layer, so that testing an order checkout
flow with a deploy preview of a pull request would trigger the pull
request–specific version of the webhook Lambda function.

We can’t imagine that anyone working on large backend or infra‐
structure system based on a microservice architecture would dream
of doing this without a solid service discovery layer. In the same
way, we see service discovery for the frontend becoming not only
more relevant, but essential as developers move toward decoupled,
microservice-based architectures for our web-facing properties.

Deploying and Managing Microservices
The new Smashing Magazine is essentially a static frontend served
directly from a CDN, talking through a gateway to various micro‐
services. Some of them are managed services like Stripe or Algolia,
but the project also had several open source microservices like
GoTrue, GoCommerce, Git Gateway, as well as GoTell, and in the
beginning the different webhook services were deployed as one ser‐
vice called Smashing Central.

At the start of the project, all of these were deployed to Heroku and
used Heroku’s managed Postgres database for the persistence layer.

One thing that’s essential when working with a microservice-based
architecture is that each microservice should own its own data and
not share tables with other services. Having multiple services share
the same data is an antipattern and makes deploying changes with
migrations or making hosting changes to initial services a cumber‐
some process. Suddenly all the microservices are tightly coupled and
you’re back to building a monolith but with more orchestration
overhead.

Deploying and Managing Microservices | 107

After Netlify launched managed versions of GoTrue, GoCommerce,
and Git Gateway, we migrated the endpoints there. These services
run in a Kubernettes cluster, and this is becoming a more and more
standard setup for the microservice layer in the JAMStack. The team
could do this as a gradual process, moving these services one by one
to the managed stack without interruption given that there was no
coupling between them.

The Smashing Central service that was the one microservice written
specifically for the Smashing Magazine process eventually was com‐
pletely replaced with Lambda functions deployed through Netlify
together with the frontend.

We generally see serverless functions as the preferred option when‐
ever there are small custom microservices that don’t need a persis‐
tence layer, with Kubernetes (often in managed versions) emerging
as the main deployment target for services that have too large of a
surface area to be a good fit for systems like AWS Lambda.

Summary
Smashing Magazine moved from a system built from four traditional
monolithic applications, with four independent frontend implemen‐
tations of the same visual theme that had been adapted to the quirks
of each platform, to a setup in which the entire implementation was
driven by and based on one single static frontend talking to a set of
different microservices using a few serverless functions as the glue
in the middle.

The team that built this project was very small and entirely frontend
focused. All of the backend services were either open source micro‐
services (GoTrue and GoCommerce) or third-party managed serv‐
ices (Stripe, Algolia, and MailChimp). The total amount of custom,
server-side code for this entire project consisted of 575 lines of Java‐
Script across 3 small AWS Lambda functions.

Any interaction a visitor has with the site while browsing magazine
content, viewing the product catalog, or perusing the job board for
new opportunities happens without any dynamic, server-side code
—it’s just a static frontend loaded directly from the closest CDN
edge node. It is only when an action is taken (confirming an order,
posting a comment, signing up for a plan, etc.) that any dynamic

108 | Chapter 6: Applying the JAMstack at Scale

code is used, either in the form of microservices or Lambda func‐
tions.

This makes the core experience incredibly performant and removes
all maintenance concerns from essential parts of Smashing Maga‐
zine. Before the change, the kind of viral traffic that Smashing Maga‐
zine frequently received would cause reliability issues regardless of
the amount of Wordpress caching plug-ins in use. Plus, the work
required to constantly keep Wordpress (and Rails and Kirby) up to
date without breaking the site ate up most of the budget for site
improvements or updates.

With the new site, it’s been straightforward for the team to work on
new sections, design tweaks, cute little touches to the different
checkout flows, and performance improvements. Anyone can run
the full production site locally just by doing a Git clone of the repos‐
itory and spinning up a development server, with no need to set up
development databases. Any pull request to the site is built to a new
preview URL where it can be browsed and tested before being
merged in—including any new article that the team is preparing to
publish.

The Git-based CMS has proved a great approach for allowing both
web-based content editing with live previews. It has also enabled
developers to dive in through their code editors. Having all files as
plain text in a Git repository makes scripting Bash operations (like
inserting ad panels or doing content migrations) easy and brings full
revision history to all content edits.

Though tools like Netlify CMS or the GoCommerce store admin are
not currently as mature as the tools with 15-plus years of history,
and there are still some rough edges to be worked out, it’s without a
doubt that the Smashing Magazine team has benefited significantly
from this shift. And perhaps more important, so have its readers.

Summary | 109

CHAPTER 7

Conclusion

And One More Thing...
When we talk about the JAMstack, it’s easy to drill into the advan‐
tages that it has for us as developers and the projects we build. But
there’s something larger at stake that the JAMstack addresses, and
we’d be remiss not to discuss it here.

The JAMstack is a response to some of the most urgent threats to
the web. But first, a quick history lesson.

When the iPhone was brand new and Steve Jobs was busy killing off
Flash, HTML5 applications were meant to be the main delivery
mechanism for all third-party applications on the Apple ecosystem.
Jobs wrote in his famous open letter to Adobe:

Adobe’s Flash products are 100% proprietary. They are only avail‐
able from Adobe, and Adobe has sole authority as to their future
enhancement, pricing, etc. While Adobe’s Flash products are widely
available, this does not mean they are open, since they are con‐
trolled entirely by Adobe and available only from Adobe. By almost
any definition, Flash is a closed system.
Apple has many proprietary products too. Though the operating
system for the iPhone, iPod and iPad is proprietary, we strongly
believe that all standards pertaining to the web should be open.
Rather than use Flash, Apple has adopted HTML5, CSS and Java‐
Script – all open standards. Apple’s mobile devices all ship with
high performance, low power implementations of these open
standards. HTML5, the new web standard that has been adopted by
Apple, Google and many others, lets web developers create

111

advanced graphics, typography, animations and transitions without
relying on third party browser plug-ins (like Flash). HTML5 is
completely open and controlled by a standards committee, of
which Apple is a member.

However, web applications at the time lacked the performance and
user experience needed to drive the new mobile development sys‐
tem. Ironically, Apple ended up with a proprietary ecosystem for
which it was the sole gatekeeper.

Still, the web is the one place where anyone can have the freedom
and ability to publish to a global audience in an instant—without
asking anyone for permission. But if the web fails to deliver on per‐
formance, fails to provide suitable security, or fails to deliver a high
enough quality user experience, it will eventually lose out to walled
gardens with strict corporate gatekeepers.

Large companies are aware of the impact such things have on them,
and the benefits that good performance can have on their custom‐
ers. We are already seeing companies such as Google and Facebook
tackle this challenge by introducing their own technologies like
Accelerated Mobile Pages (AMP) and Instant Articles to deliver bet‐
ter performance and security, but at the cost of driving publishers to
create content within the boundaries of these organizations rather
than in the commons of the open web.

Solving the performance, security, and scaling issues of the legacy
web while building responsive and engaging user interfaces that can
truly delight the people using them is vital to keeping the web com‐
petitive, alive, and in good health.

The JAMstack is up for the challenge, providing a set of architec‐
tural practices, constraints, and guidelines that aims to make the
web faster, safer, and simpler.

112 | Chapter 7: Conclusion

About the Authors
Mathias Biilmann is the technical cofounder and CEO of Netlify, a
platform for modern web development used by hundreds of thou‐
sands of developers worldwide. An active participant in open
source, Mathias has contributed to the following well-known
projects: Netlify CMS, Ruby on Rails, JRuby, and Mongoid.

Phil Hawksworth is principal developer advocate at Netlify. With a
passion for browser technologies, and the empowering properties of
the Web, Phil loves seeking out ingenuity and simplicity, especially
in places where overengineering is common. Phil’s 20 year career in
web development includes time as a software engineer at Verisign,
an open source evangelist at British Telecom, and technology direc‐
tor at R/GA where he worked with clients around the world such as
Nike, Google, Beats By Dre, and Samsung to bring engaging and
effective experiences to the widest audience possible.

Acknowledgments
This report would not be possible without the contributions, review,
and inspiration from the following people:

Chris Bach is cofounder of Netlify. Previously, he spent 14 years in
the agency world, where he started Denmark’s first hybrid produc‐
tion agency and won many international awards. He stands behind
services like headlesscms.org, testmysite.io, and jamstack.org, and is
one of the originators of the JAMstack term.

Todd Morey is creative director at Netlify, a passionate user of JAM‐
stack technologies, and one of the early investors in the company.
He cofounded The Rackspace Cloud and was creative director at the
OpenStack Foundation.

	Cover
	Netlify
	Copyright
	Table of Contents
	Introduction
	The JAM in JAMstack
	A Workflow for Productivity and Performance
	Version Control and Atomic Deploys
	Contributing on the JAMstack
	APIs to Process and Personalize
	Bringing It All Together: A Smashing Magazine Case Study
	Ready? Time to Get Our JAM Session Started

	Chapter 1. The Challenges of Modern Web Development
	The Drawbacks of Monolithic Architectures
	Limited Flexibility
	Performance Concerns
	Scaling Challenges
	Security Woes

	The Risk of Staying the Same

	Chapter 2. Introducing the JAMstack
	What’s in a Name?
	JavaScript
	APIs
	Markup
	Prebuilding Markup

	Types of JAMstack Projects
	HTML Content
	Content from a CMS
	Web Applications
	Large Web Properties
	Hybrid Experiences

	Summary

	Chapter 3. Advantages of the JAMstack
	Simplifying Systems and Simplifying Thinking
	Better Comprehension and Mental Agility
	You Don’t Need to Be an Expert at Everything
	Reduce Moving Parts at Runtime

	Costs
	Financial Costs
	Team Efficiency
	The Price of Innovation

	Scale
	Aping Static in Order to Scale
	Geography
	Redundancy

	Performance
	Where to Focus Optimization Efforts
	Only Turning the Gears When Necessary

	Security
	Reducing Surface Area
	Reducing Risk with Read-Only
	Outsourced or Abstracted Services

	For the Developer; For the Project; For the Win

	Chapter 4. Planning for the JAMstack
	Setting Up the Project
	Strategies for Managing Content
	Text Files
	Git-Based CMS
	Headless CMS
	Self-Hosted CMS

	Choosing a Site Generator
	One: The Type of Website
	Two: The Programming Language Used
	Three: The Templating Syntax
	Four: Speed
	Five: Developer Tooling

	Adding Automation
	Using GitHub Pages and GitLab Pages
	Using Your Own Infrastructure
	Using a Hosted Deployment Service

	Selecting a CDN
	Edge Locations
	Instant Updates
	Multiple Providers

	Providing Functionality: APIs

	Chapter 5. Shifting the Mental Model
	A Mindset and an Approach
	One: Get to the CDN
	Designing for the Best Use of a CDN

	Two: Design for Immutability and Atomic Deployments
	Confidence from Immutability
	The Advantages of Immutable Deployments
	Positioning for Immutable Deployments
	Atomic Deployments

	Three: Employ End-to-End Version Control
	Reducing the Cost of Onboarding
	Making Version Control the Backbone of Your Project

	Four: Automation and Tooling
	A Powerful Site-Generation Pattern
	Minimizing the Risk of Human Intervention

	Five: Embrace the Ecosystem
	Forms
	Search
	Notifications
	Identity

	Six: Bridging the Last Gaps with Functions as a Service
	Being Comfortable with Breaking the Monolith

	Chapter 6. Applying the JAMstack at Scale
	A Case Study: Smashing Magazine
	The Challenge
	Key Considerations
	Duplicated Templates
	Performance, Reliability, and Security
	Membership

	Picking the Right Tools
	Static Site Generator
	Asset Pipeline
	Frontend Framework

	Content Migration
	Utilizing Structured Content
	Working with Large Sites
	Building Out the Core
	Search
	Content Management
	Integrating Netlify CMS
	Listings, Search, and Assets: Customizing the CMS for Large Projects
	Identity, Users, and Roles
	JWTs and Stateless Authentication

	Ecommerce
	Identity and Orders

	Membership and Subscriptions
	Tying It Together: Member Discounts in GoCommerce
	Job Board and Event Tickets: AWS Lambda and Event-Based Webhooks
	Workflows and API Gateways
	Deploying and Managing Microservices
	Summary

	Chapter 7. Conclusion
	And One More Thing...

	About the Authors

